Genetic parameter estimates for scrotal circumference and semen characteristics of Line 1 Hereford bulls. 2006

C G Kealey, and M D MacNeil, and M W Tess, and T W Geary, and R A Bellows
Montana State University, Bozeman, 59717, USA.

The objectives of this study were to estimate heritability for scrotal circumference (SC) and semen traits and their genetic correlations (rg) with birth weight (BRW). Semen traits were recorded for Line 1 Hereford bulls (n = 841), born in 1963 or from 1967 to 2000, that were selected for use at Fort Keogh (Miles City, MT) or for sale. Semen was collected by electroejaculation when bulls were a mean age of 446 d. Phenotypes were BRW, SC, ejaculate volume, subjective scores for ejaculate color, swirl, sperm concentration and motility, and percentages of sperm classified as normal and live or having abnormal heads, abnormal midpieces, proximal cytoplasmic droplets (primary abnormalities), bent tails, coiled tails, or distal cytoplasmic droplets (secondary abnormalities). Percentages of primary and secondary also were calculated. Data were analyzed using multiple-trait derivative-free REML. Models included fixed effects for contemporary group, age of dam, age of bull, inbreeding of the bull and his dam, and random animal and residual effects. Random maternal and permanent maternal environmental effects were also included in the model for BRW. Estimates of heritability for BRW, SC, semen color, volume, concentration, swirl, motility, and percentages of normal, live, abnormal heads, abnormal midpieces, proximal cytoplasmic droplets, bent tails, coiled tails, distal cytoplasmic droplets, and primary and secondary abnormalities were 0.34, 0.57, 0.15, 0.09, 0.16, 0.21, 0.22, 0.35, 0.22, 0.00 0.16, 0.37, 0.00 0.34 0.00, 0.30, and 0.33, respectively. Estimates of rg for SC with color, volume, concentration, swirl, motility, and percentages of live, normal, and primary and secondary abnormalities were 0.73, 0.20, 0.77, 0.40, 0.34, 0.63, 0.33, -0.36, and -0.45, respectively. Estimates of rg for BRW with SC, color, volume, concentration, swirl, motility, and percentages live, normal, and primary and secondary abnormalities were 0.28, 0.60, 0.08, 0.58, 0.44, 0.21, 0.34, 0.20, -0.02, and -0.16, respectively. If selection pressure was applied to increase SC, all of the phenotypes evaluated would be expected to improve. Predicted correlated responses in semen characteristics per genetic SD of selection applied to SC were 0.87 genetic SD or less. If selection pressure was applied to reduce BRW, the correlated responses would generally be smaller but antagonistic to improving all of the phenotypes evaluated. Predicted correlated responses in SC and semen characteristics per genetic SD of selection applied to BRW were less than 0.35 genetic SD.

UI MeSH Term Description Entries
D008297 Male Males
D008957 Models, Genetic Theoretical representations that simulate the behavior or activity of genetic processes or phenomena. They include the use of mathematical equations, computers, and other electronic equipment. Genetic Models,Genetic Model,Model, Genetic
D001724 Birth Weight The mass or quantity of heaviness of an individual at BIRTH. It is expressed by units of pounds or kilograms. Birthweight,Birth Weights,Birthweights,Weight, Birth,Weights, Birth
D001947 Breeding The production of offspring by selective mating or HYBRIDIZATION, GENETIC in animals or plants. Breedings
D002417 Cattle Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor. Beef Cow,Bos grunniens,Bos indicus,Bos indicus Cattle,Bos taurus,Cow,Cow, Domestic,Dairy Cow,Holstein Cow,Indicine Cattle,Taurine Cattle,Taurus Cattle,Yak,Zebu,Beef Cows,Bos indicus Cattles,Cattle, Bos indicus,Cattle, Indicine,Cattle, Taurine,Cattle, Taurus,Cattles, Bos indicus,Cattles, Indicine,Cattles, Taurine,Cattles, Taurus,Cow, Beef,Cow, Dairy,Cow, Holstein,Cows,Dairy Cows,Domestic Cow,Domestic Cows,Indicine Cattles,Taurine Cattles,Taurus Cattles,Yaks,Zebus
D004777 Environment The external elements and conditions which surround, influence, and affect the life and development of an organism or population. Environmental Impact,Environmental Impacts,Impact, Environmental,Impacts, Environmental,Environments
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012611 Scrotum A cutaneous pouch of skin containing the testicles and spermatic cords. Scrotums
D012661 Semen The thick, yellowish-white, viscid fluid secretion of male reproductive organs discharged upon ejaculation. In addition to reproductive organ secretions, it contains SPERMATOZOA and their nutrient plasma. Seminal Plasma,Plasma, Seminal
D013094 Spermatozoa Mature male germ cells derived from SPERMATIDS. As spermatids move toward the lumen of the SEMINIFEROUS TUBULES, they undergo extensive structural changes including the loss of cytoplasm, condensation of CHROMATIN into the SPERM HEAD, formation of the ACROSOME cap, the SPERM MIDPIECE and the SPERM TAIL that provides motility. Sperm,Spermatozoon,X-Bearing Sperm,X-Chromosome-Bearing Sperm,Y-Bearing Sperm,Y-Chromosome-Bearing Sperm,Sperm, X-Bearing,Sperm, X-Chromosome-Bearing,Sperm, Y-Bearing,Sperm, Y-Chromosome-Bearing,Sperms, X-Bearing,Sperms, X-Chromosome-Bearing,Sperms, Y-Bearing,Sperms, Y-Chromosome-Bearing,X Bearing Sperm,X Chromosome Bearing Sperm,X-Bearing Sperms,X-Chromosome-Bearing Sperms,Y Bearing Sperm,Y Chromosome Bearing Sperm,Y-Bearing Sperms,Y-Chromosome-Bearing Sperms

Related Publications

C G Kealey, and M D MacNeil, and M W Tess, and T W Geary, and R A Bellows
November 1987, Theriogenology,
C G Kealey, and M D MacNeil, and M W Tess, and T W Geary, and R A Bellows
March 2011, Journal of animal science,
C G Kealey, and M D MacNeil, and M W Tess, and T W Geary, and R A Bellows
September 2021, Theriogenology,
C G Kealey, and M D MacNeil, and M W Tess, and T W Geary, and R A Bellows
February 1991, Journal of animal science,
C G Kealey, and M D MacNeil, and M W Tess, and T W Geary, and R A Bellows
December 1992, Theriogenology,
C G Kealey, and M D MacNeil, and M W Tess, and T W Geary, and R A Bellows
April 1986, Journal of animal science,
C G Kealey, and M D MacNeil, and M W Tess, and T W Geary, and R A Bellows
August 1985, Theriogenology,
C G Kealey, and M D MacNeil, and M W Tess, and T W Geary, and R A Bellows
March 2023, Animal : an international journal of animal bioscience,
C G Kealey, and M D MacNeil, and M W Tess, and T W Geary, and R A Bellows
May 2019, New Zealand veterinary journal,
C G Kealey, and M D MacNeil, and M W Tess, and T W Geary, and R A Bellows
October 1999, Journal of animal science,
Copied contents to your clipboard!