Bovine parainfluenza type 3 virus infection: ultrastructural aspects of viral pathogenesis in the bovine respiratory tract. 1975

K S Tsai, and R G Thomson

After aerosolization of a bovine strain of parainfluenza type 3 virus, the pathogenesis of the virus was followed from the trachea to the bronchioalveolar compartments of the lung of colostrum-free calves and of conventionally reared calves during a 5- to 12-day postexposure interval. By tissue titration, plaque assay, and electron microscopy, it was found that virus infection could be established in colostrum-free calves as well as in conventionally reared calves, even though sequential changes of virus replication were observed mainly in the infected colostrum-free calves during the 5- to 6-day postexposure periods. Electron microscopy demonstrations of (i) aggregates of viral nucleocapsids in the cytoplasm, (ii) alterations of cilia and basal bodies, (iii) dissolution of cytoplasmic membranes, and (iv) the shedding of virus into luminal spaces confirmed that epithelial cells of the respiratory tract were the primary target cells for the virus replication leading to cell destruction. These observations revealed further that productive infection was more efficient in the bronchioalveolar regions than in the tracheal regions, although large aggregates of viral nucleocapsids and destructive changes were more pronounced in the tracheal epithelium. The finding that parainfluenza type 3 virus replicates in the alveolar type II cells suggests that changes in surfactant production may occur during the peak of infection of these cells. The demonstration of virus budding through the basement membrane of small bronchioles and the presence of virus particles in the interstitial regions imply that one of the host defense lines, the basement membrane, may be impaired by virus invasion.

UI MeSH Term Description Entries
D007668 Kidney Body organ that filters blood for the secretion of URINE and that regulates ion concentrations. Kidneys
D008168 Lung Either of the pair of organs occupying the cavity of the thorax that effect the aeration of the blood. Lungs
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D010948 Viral Plaque Assay Method for measuring viral infectivity and multiplication in CULTURED CELLS. Clear lysed areas or plaques develop as the VIRAL PARTICLES are released from the infected cells during incubation. With some VIRUSES, the cells are killed by a cytopathic effect; with others, the infected cells are not killed but can be detected by their hemadsorptive ability. Sometimes the plaque cells contain VIRAL ANTIGENS which can be measured by IMMUNOFLUORESCENCE. Bacteriophage Plaque Assay,Assay, Bacteriophage Plaque,Assay, Viral Plaque,Assays, Bacteriophage Plaque,Assays, Viral Plaque,Bacteriophage Plaque Assays,Plaque Assay, Bacteriophage,Plaque Assay, Viral,Plaque Assays, Bacteriophage,Plaque Assays, Viral,Viral Plaque Assays
D012137 Respiratory System The tubular and cavernous organs and structures, by means of which pulmonary ventilation and gas exchange between ambient air and the blood are brought about. Respiratory Tract,Respiratory Systems,Respiratory Tracts,System, Respiratory,Tract, Respiratory
D001831 Body Temperature The measure of the level of heat of a human or animal. Organ Temperature,Body Temperatures,Organ Temperatures,Temperature, Body,Temperature, Organ,Temperatures, Body,Temperatures, Organ
D002417 Cattle Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor. Beef Cow,Bos grunniens,Bos indicus,Bos indicus Cattle,Bos taurus,Cow,Cow, Domestic,Dairy Cow,Holstein Cow,Indicine Cattle,Taurine Cattle,Taurus Cattle,Yak,Zebu,Beef Cows,Bos indicus Cattles,Cattle, Bos indicus,Cattle, Indicine,Cattle, Taurine,Cattle, Taurus,Cattles, Bos indicus,Cattles, Indicine,Cattles, Taurine,Cattles, Taurus,Cow, Beef,Cow, Dairy,Cow, Holstein,Cows,Dairy Cows,Domestic Cow,Domestic Cows,Indicine Cattles,Taurine Cattles,Taurus Cattles,Yaks,Zebus
D002418 Cattle Diseases Diseases of domestic cattle of the genus Bos. It includes diseases of cows, yaks, and zebus. Bovine Diseases,Bovine Disease,Cattle Disease,Disease, Bovine,Disease, Cattle,Diseases, Bovine,Diseases, Cattle
D006385 Hemagglutination Inhibition Tests Serologic tests in which a known quantity of antigen is added to the serum prior to the addition of a red cell suspension. Reaction result is expressed as the smallest amount of antigen which causes complete inhibition of hemagglutination. Hemagglutination Inhibition Test,Inhibition Test, Hemagglutination,Inhibition Tests, Hemagglutination,Test, Hemagglutination Inhibition,Tests, Hemagglutination Inhibition
D000336 Aerosols Colloids with a gaseous dispersing phase and either liquid (fog) or solid (smoke) dispersed phase; used in fumigation or in inhalation therapy; may contain propellant agents. Aerosol

Related Publications

K S Tsai, and R G Thomson
July 1969, Journal of comparative pathology,
K S Tsai, and R G Thomson
December 1971, Journal of the American Veterinary Medical Association,
K S Tsai, and R G Thomson
October 1973, Journal of the American Veterinary Medical Association,
K S Tsai, and R G Thomson
January 1968, Archiv fur die gesamte Virusforschung,
K S Tsai, and R G Thomson
January 1979, Microbiology and immunology,
Copied contents to your clipboard!