The hormonal control of gluconeogenesis by regulation of mitochondrial pyruvate carboxylation in isolated rat liver cells. 1975

J C Garrison, and R C Haynes

The possibility that hormones control hepatic gluconeogenesis via the regulation of the rate of mitochondrial pyruvate carboxylation was investigated with the use of suspensions of liver cells isolated from fasted rats. The mitochondria prepared from liver cells were judged in good condition as they exhibited satisfactory phosphorus-oxygen and respiratory control ratios and transported Ca2+ and K+ ions in an energy-dependent manner. Addition of glucagon, epinephrine, or cyclic adenosine 3':5'-monophosphate to liver cells caused a 50 to 80% increase in the rate of glucose synthesis from lactate. When mitochondria were isolated from the cells after treatment with these agonists, they displayed 2- to 3-fold increases in the rate of pyruvate carboxylation, pyruvate decarboxylation, and pyruvate uptake. These mitochondrial changes are similar to those obtained in hepatic mitochondria prepared from intact, hormone-treated rats. The mitochondrial responses were specific for agents that stimulated gluconeogenesis; no response occurred with 5'-AMP or cyclic adenosine 2':3'-monophosphate. In the cell suspensions, the dose response curves for the activation of mitochondrial pyruvate metabolism and for increased glucose synthesis from L-lactate were coincident with four different agonists. The mitochondrial changes resulting from stimulation with glucagon developed in 1 to 2 min after the rise in cyclic adenosine 3':5'-monophosphate and occurred at least as early as the increase in the rate of gluconeogenesis. When the intracellular level of cyclic adenosine 3':5'-monophosphate returned to basal values, the rates of mitochondrial pyruvate carboxylation and glucose synthesis also declined to control levels. It is concluded that the rate of mitochondrial pyruvate metabolisms can be increased by hormones and cyclic nucleotides and that control of mitochondrial pyruvate carboxylation is an important regulatory site of hepatic gluconeogenesis.

UI MeSH Term Description Entries
D008930 Mitochondria, Liver Mitochondria in hepatocytes. As in all mitochondria, there are an outer membrane and an inner membrane, together creating two separate mitochondrial compartments: the internal matrix space and a much narrower intermembrane space. In the liver mitochondrion, an estimated 67% of the total mitochondrial proteins is located in the matrix. (From Alberts et al., Molecular Biology of the Cell, 2d ed, p343-4) Liver Mitochondria,Liver Mitochondrion,Mitochondrion, Liver
D010085 Oxidative Phosphorylation Electron transfer through the cytochrome system liberating free energy which is transformed into high-energy phosphate bonds. Phosphorylation, Oxidative,Oxidative Phosphorylations,Phosphorylations, Oxidative
D011188 Potassium An element in the alkali group of metals with an atomic symbol K, atomic number 19, and atomic weight 39.10. It is the chief cation in the intracellular fluid of muscle and other cells. Potassium ion is a strong electrolyte that plays a significant role in the regulation of fluid volume and maintenance of the WATER-ELECTROLYTE BALANCE.
D011773 Pyruvates Derivatives of PYRUVIC ACID, including its salts and esters.
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002245 Carbon Dioxide A colorless, odorless gas that can be formed by the body and is necessary for the respiration cycle of plants and animals. Carbonic Anhydride,Anhydride, Carbonic,Dioxide, Carbon
D003994 Bucladesine A cyclic nucleotide derivative that mimics the action of endogenous CYCLIC AMP and is capable of permeating the cell membrane. It has vasodilator properties and is used as a cardiac stimulant. (From Merck Index, 11th ed) Dibutyryl Adenosine-3',5'-Monophosphate,Dibutyryl Cyclic AMP,(But)(2) cAMP,Bucladesine, Barium (1:1) Salt,Bucladesine, Disodium Salt,Bucladesine, Monosodium Salt,Bucladesine, Sodium Salt,DBcAMP,Dibutyryl Adenosine 3,5 Monophosphate,N',O'-Dibutyryl-cAMP,N(6),0(2')-Dibutyryl Cyclic AMP,AMP, Dibutyryl Cyclic,Adenosine-3',5'-Monophosphate, Dibutyryl,Cyclic AMP, Dibutyryl,Dibutyryl Adenosine 3',5' Monophosphate,Disodium Salt Bucladesine,Monosodium Salt Bucladesine,N',O' Dibutyryl cAMP,Sodium Salt Bucladesine
D005934 Glucagon A 29-amino acid pancreatic peptide derived from proglucagon which is also the precursor of intestinal GLUCAGON-LIKE PEPTIDES. Glucagon is secreted by PANCREATIC ALPHA CELLS and plays an important role in regulation of BLOOD GLUCOSE concentration, ketone metabolism, and several other biochemical and physiological processes. (From Gilman et al., Goodman and Gilman's The Pharmacological Basis of Therapeutics, 9th ed, p1511) Glucagon (1-29),Glukagon,HG-Factor,Hyperglycemic-Glycogenolytic Factor,Proglucagon (33-61),HG Factor,Hyperglycemic Glycogenolytic Factor
D005943 Gluconeogenesis Biosynthesis of GLUCOSE from nonhexose or non-carbohydrate precursors, such as LACTATE; PYRUVATE; ALANINE; and GLYCEROL.
D005947 Glucose A primary source of energy for living organisms. It is naturally occurring and is found in fruits and other parts of plants in its free state. It is used therapeutically in fluid and nutrient replacement. Dextrose,Anhydrous Dextrose,D-Glucose,Glucose Monohydrate,Glucose, (DL)-Isomer,Glucose, (alpha-D)-Isomer,Glucose, (beta-D)-Isomer,D Glucose,Dextrose, Anhydrous,Monohydrate, Glucose

Related Publications

J C Garrison, and R C Haynes
October 1986, Biochimica et biophysica acta,
J C Garrison, and R C Haynes
December 1976, FEBS letters,
J C Garrison, and R C Haynes
September 1970, Biochemistry,
J C Garrison, and R C Haynes
August 1976, Proceedings of the National Academy of Sciences of the United States of America,
J C Garrison, and R C Haynes
May 1983, The Biochemical journal,
J C Garrison, and R C Haynes
January 1978, Biochemical Society transactions,
Copied contents to your clipboard!