Comparison of activity of individual pyramidal tract neurons during balancing, locomotion, and scratching. 2006

Irina N Beloozerova, and Mikhail G Sirota, and Grigori N Orlovsky, and Tatiana G Deliagina
Barrow Neurological Institute, Phoenix, AZ 85013, USA.

Neuronal mechanisms of the spinal cord, brainstem, and cerebellum play a key role in the control of complex automatic motor behaviors-postural corrections, stepping, and scratching, whereas the role of the motor cortex is less clear. To assess this role, we recorded fore and hind limb-related pyramidal tract neurons (PTNs) in the cat during postural corrections and during locomotion; hind limb PTNs were also tested during scratching. The activity of nearly all PTNs was modulated in the rhythm of each of these motor patterns. The discharge frequency, averaged over the PTN population, was similar in different motor tasks, whereas the degree of frequency modulation was larger during locomotion. In individual PTNs, a correlation between analogous discharge characteristics (frequency or its modulation) in different tasks was very low, suggesting that input signals to PTNs in these tasks have a substantially different origin. In about a half of PTNs, their activity in different tasks was timed to the analogous (flexor/extensor) parts of the cycle, suggesting that these PTNs perform similar functions in these tasks (e.g., control of the value of muscle activity). In another half of PTNs, their activity was timed to opposite parts of the cycle in different tasks. These PTNs seem to perform different motor functions in different tasks, or their targets are active in different parts of the cycle in these tasks, or their effects are not directly related to the control of motor output (e.g., they modulate transmission of afferent signals).

UI MeSH Term Description Entries
D009043 Motor Activity Body movements of a human or an animal as a behavioral phenomenon. Activities, Motor,Activity, Motor,Motor Activities
D009044 Motor Cortex Area of the FRONTAL LOBE concerned with primary motor control located in the dorsal PRECENTRAL GYRUS immediately anterior to the central sulcus. It is comprised of three areas: the primary motor cortex located on the anterior paracentral lobule on the medial surface of the brain; the premotor cortex located anterior to the primary motor cortex; and the supplementary motor area located on the midline surface of the hemisphere anterior to the primary motor cortex. Brodmann Area 4,Brodmann Area 6,Brodmann's Area 4,Brodmann's Area 6,Premotor Cortex and Supplementary Motor Cortex,Premotor and Supplementary Motor Cortices,Anterior Central Gyrus,Gyrus Precentralis,Motor Area,Motor Strip,Precentral Gyrus,Precentral Motor Area,Precentral Motor Cortex,Premotor Area,Premotor Cortex,Primary Motor Area,Primary Motor Cortex,Secondary Motor Areas,Secondary Motor Cortex,Somatic Motor Areas,Somatomotor Areas,Supplementary Motor Area,Area 4, Brodmann,Area 4, Brodmann's,Area 6, Brodmann,Area 6, Brodmann's,Area, Motor,Area, Precentral Motor,Area, Premotor,Area, Primary Motor,Area, Secondary Motor,Area, Somatic Motor,Area, Somatomotor,Area, Supplementary Motor,Brodmann's Area 6s,Brodmanns Area 4,Brodmanns Area 6,Central Gyrus, Anterior,Cortex, Motor,Cortex, Precentral Motor,Cortex, Premotor,Cortex, Primary Motor,Cortex, Secondary Motor,Cortices, Secondary Motor,Gyrus, Anterior Central,Gyrus, Precentral,Motor Area, Precentral,Motor Area, Primary,Motor Area, Secondary,Motor Area, Somatic,Motor Areas,Motor Cortex, Precentral,Motor Cortex, Primary,Motor Cortex, Secondary,Motor Strips,Precentral Motor Areas,Precentral Motor Cortices,Premotor Areas,Primary Motor Areas,Primary Motor Cortices,Secondary Motor Area,Secondary Motor Cortices,Somatic Motor Area,Somatomotor Area,Supplementary Motor Areas
D009046 Motor Neurons Neurons which activate MUSCLE CELLS. Neurons, Motor,Alpha Motorneurons,Motoneurons,Motor Neurons, Alpha,Neurons, Alpha Motor,Alpha Motor Neuron,Alpha Motor Neurons,Alpha Motorneuron,Motoneuron,Motor Neuron,Motor Neuron, Alpha,Motorneuron, Alpha,Motorneurons, Alpha,Neuron, Alpha Motor,Neuron, Motor
D009048 Motor Skills Performance of complex motor acts. Motor Skill,Skill, Motor,Skills, Motor
D009068 Movement The act, process, or result of passing from one place or position to another. It differs from LOCOMOTION in that locomotion is restricted to the passing of the whole body from one place to another, while movement encompasses both locomotion but also a change of the position of the whole body or any of its parts. Movement may be used with reference to humans, vertebrate and invertebrate animals, and microorganisms. Differentiate also from MOTOR ACTIVITY, movement associated with behavior. Movements
D011187 Posture The position or physical attitude of the body. Postures
D011712 Pyramidal Tracts Fibers that arise from cells within the cerebral cortex, pass through the medullary pyramid, and descend in the spinal cord. Many authorities say the pyramidal tracts include both the corticospinal and corticobulbar tracts. Corticobulbar Tracts,Corticospinal Tracts,Decussation, Pyramidal,Corticobulbar Tract,Corticospinal Tract,Pyramidal Decussation,Pyramidal Tract,Tract, Corticobulbar,Tract, Corticospinal,Tract, Pyramidal,Tracts, Corticobulbar,Tracts, Corticospinal,Tracts, Pyramidal
D012018 Reflex An involuntary movement or exercise of function in a part, excited in response to a stimulus applied to the periphery and transmitted to the brain or spinal cord.
D002415 Cats The domestic cat, Felis catus, of the carnivore family FELIDAE, comprising over 30 different breeds. The domestic cat is descended primarily from the wild cat of Africa and extreme southwestern Asia. Though probably present in towns in Palestine as long ago as 7000 years, actual domestication occurred in Egypt about 4000 years ago. (From Walker's Mammals of the World, 6th ed, p801) Felis catus,Felis domesticus,Domestic Cats,Felis domestica,Felis sylvestris catus,Cat,Cat, Domestic,Cats, Domestic,Domestic Cat
D005552 Forelimb A front limb of a quadruped. (The Random House College Dictionary, 1980) Forelimbs

Related Publications

Irina N Beloozerova, and Mikhail G Sirota, and Grigori N Orlovsky, and Tatiana G Deliagina
January 1988, Behavioural brain research,
Irina N Beloozerova, and Mikhail G Sirota, and Grigori N Orlovsky, and Tatiana G Deliagina
May 1969, Journal of neurophysiology,
Irina N Beloozerova, and Mikhail G Sirota, and Grigori N Orlovsky, and Tatiana G Deliagina
April 2012, Journal of neurophysiology,
Irina N Beloozerova, and Mikhail G Sirota, and Grigori N Orlovsky, and Tatiana G Deliagina
January 1973, Biofizika,
Irina N Beloozerova, and Mikhail G Sirota, and Grigori N Orlovsky, and Tatiana G Deliagina
January 1972, Biofizika,
Irina N Beloozerova, and Mikhail G Sirota, and Grigori N Orlovsky, and Tatiana G Deliagina
January 1972, Biofizika,
Irina N Beloozerova, and Mikhail G Sirota, and Grigori N Orlovsky, and Tatiana G Deliagina
May 2013, The Journal of physiology,
Irina N Beloozerova, and Mikhail G Sirota, and Grigori N Orlovsky, and Tatiana G Deliagina
January 1977, Biofizika,
Irina N Beloozerova, and Mikhail G Sirota, and Grigori N Orlovsky, and Tatiana G Deliagina
November 2005, The European journal of neuroscience,
Irina N Beloozerova, and Mikhail G Sirota, and Grigori N Orlovsky, and Tatiana G Deliagina
November 1972, Brain research,
Copied contents to your clipboard!