Palmitate metabolism by isolated sheep rumen epithelial cells. 1992

B W Jesse, and R K Solomon, and R L Baldwin
Department of Animal Sciences, Rutgers, State University, New Brunswick, NJ 08903.

Ruminal palmitate metabolism was examined using an isolated cell system. Palmitate oxidation to 14CO2 by rumen epithelial cells isolated from the rumens of mature sheep was linear during the course of a 2-h incubation (11.1 nmoles.million cells-1.2 h-1) and 3.6 times the rate of palmitate oxidation by cells isolated from neonatal rumen (3.1 nmoles.million cells-1.min-1). Subsequent experiments were conducted with mature rumen epithelial cells. Neither acetate (50 mM), propionate (10 mM), dibutyryl cAMP (.2 mM), nor insulin (10 mU/mL) altered palmitate oxidation to CO2. However, butyrate (10 mM) addition reduced (P less than .05), and ammonia (15 mM) tended to reduce (P less than .10), palmitate oxidation (51.6 and 82.0% of control, respectively), whereas addition of glucose (2.5 mM) increased (P less than .05) palmitate oxidation (151% of control). Of the compounds tested, only propionate, butyrate, and ammonia reduced palmitate oxidation to total acid-soluble metabolites. Propionate (10 mM) addition completely abolished palmitate oxidation to acid-soluble metabolites. Succinate addition (5 to 50 mM) increased palmitate oxidation to CO2 but exhibited no consistent effect on palmitate oxidation to either acid-soluble metabolites or beta-hydroxybutyrate. Propionate completely abolished palmitate oxidation to beta-hydroxybutyrate, suggesting that propionate-induced inhibition of palmitate oxidation is not mediated via succinate. The data indicate 1) that rumen epithelium is capable of oxidizing palmitate, 2) that ruminal palmitate oxidation may be subject to regulation by developmental factors, and 3) that palmitate metabolism seems to be influenced more by ruminally derived metabolites than by factors derived exclusively from the general circulation.

UI MeSH Term Description Entries
D010084 Oxidation-Reduction A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471). Redox,Oxidation Reduction
D010168 Palmitates Salts and esters of the 16-carbon saturated monocarboxylic acid--palmitic acid. Hexadecanoates,Palmitate
D011422 Propionates Derivatives of propionic acid. Included under this heading are a broad variety of acid forms, salts, esters, and amides that contain the carboxyethane structure. Propanoate,Propanoic Acid,Propionate,Propanoates,Propanoic Acid Derivatives,Propanoic Acids,Propionic Acid Derivatives,Propionic Acids,Acid, Propanoic,Acids, Propanoic,Acids, Propionic,Derivatives, Propanoic Acid,Derivatives, Propionic Acid
D012044 Regression Analysis Procedures for finding the mathematical function which best describes the relationship between a dependent variable and one or more independent variables. In linear regression (see LINEAR MODELS) the relationship is constrained to be a straight line and LEAST-SQUARES ANALYSIS is used to determine the best fit. In logistic regression (see LOGISTIC MODELS) the dependent variable is qualitative rather than continuously variable and LIKELIHOOD FUNCTIONS are used to find the best relationship. In multiple regression, the dependent variable is considered to depend on more than a single independent variable. Regression Diagnostics,Statistical Regression,Analysis, Regression,Analyses, Regression,Diagnostics, Regression,Regression Analyses,Regression, Statistical,Regressions, Statistical,Statistical Regressions
D002087 Butyrates Derivatives of BUTYRIC ACID. Included under this heading are a broad variety of acid forms, salts, esters, and amides that contain the carboxypropane structure. Butyrate,n-Butyrate,Butanoic Acids,Butyric Acids,Acids, Butanoic,Acids, Butyric,n Butyrate
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D004847 Epithelial Cells Cells that line the inner and outer surfaces of the body by forming cellular layers (EPITHELIUM) or masses. Epithelial cells lining the SKIN; the MOUTH; the NOSE; and the ANAL CANAL derive from ectoderm; those lining the RESPIRATORY SYSTEM and the DIGESTIVE SYSTEM derive from endoderm; others (CARDIOVASCULAR SYSTEM and LYMPHATIC SYSTEM) derive from mesoderm. Epithelial cells can be classified mainly by cell shape and function into squamous, glandular and transitional epithelial cells. Adenomatous Epithelial Cells,Columnar Glandular Epithelial Cells,Cuboidal Glandular Epithelial Cells,Glandular Epithelial Cells,Squamous Cells,Squamous Epithelial Cells,Transitional Epithelial Cells,Adenomatous Epithelial Cell,Cell, Adenomatous Epithelial,Cell, Epithelial,Cell, Glandular Epithelial,Cell, Squamous,Cell, Squamous Epithelial,Cell, Transitional Epithelial,Cells, Adenomatous Epithelial,Cells, Epithelial,Cells, Glandular Epithelial,Cells, Squamous,Cells, Squamous Epithelial,Cells, Transitional Epithelial,Epithelial Cell,Epithelial Cell, Adenomatous,Epithelial Cell, Glandular,Epithelial Cell, Squamous,Epithelial Cell, Transitional,Epithelial Cells, Adenomatous,Epithelial Cells, Glandular,Epithelial Cells, Squamous,Epithelial Cells, Transitional,Glandular Epithelial Cell,Squamous Cell,Squamous Epithelial Cell,Transitional Epithelial Cell
D004848 Epithelium The layers of EPITHELIAL CELLS which cover the inner and outer surfaces of the cutaneous, mucus, and serous tissues and glands of the body. Mesothelium,Epithelial Tissue,Mesothelial Tissue,Epithelial Tissues,Mesothelial Tissues,Tissue, Epithelial,Tissue, Mesothelial,Tissues, Epithelial,Tissues, Mesothelial
D000641 Ammonia A colorless alkaline gas. It is formed in the body during decomposition of organic materials during a large number of metabolically important reactions. Note that the aqueous form of ammonia is referred to as AMMONIUM HYDROXIDE.
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

B W Jesse, and R K Solomon, and R L Baldwin
September 1979, The Proceedings of the Nutrition Society,
B W Jesse, and R K Solomon, and R L Baldwin
June 1954, The Biochemical journal,
B W Jesse, and R K Solomon, and R L Baldwin
February 1998, The Journal of nutrition,
B W Jesse, and R K Solomon, and R L Baldwin
January 2002, Journal of animal science,
B W Jesse, and R K Solomon, and R L Baldwin
July 1967, Journal of animal science,
B W Jesse, and R K Solomon, and R L Baldwin
September 1964, The Biochemical journal,
B W Jesse, and R K Solomon, and R L Baldwin
March 1978, Research in veterinary science,
B W Jesse, and R K Solomon, and R L Baldwin
May 1970, Comptes rendus hebdomadaires des seances de l'Academie des sciences. Serie D: Sciences naturelles,
B W Jesse, and R K Solomon, and R L Baldwin
September 1951, The Biochemical journal,
B W Jesse, and R K Solomon, and R L Baldwin
November 2023, Veterinary research,
Copied contents to your clipboard!