Relationship between UDP-galactose 4'-epimerase activity and galactose sensitivity in yeast. 2006

Jamie Wasilenko, and Judith L Fridovich-Keil
Graduate Program in Genetics and Molecular Biology, Emory University and Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia 30322, USA.

UDP-galactose 4'-epimerase (GALE) catalyzes the final step of the highly conserved Leloir pathway of galactose metabolism. Loss of GALE in humans results in a variant form of the metabolic disorder, galactosemia. Loss of GALE in yeast results in galactose-dependent growth arrest. Although the role of GALE in galactose metabolism has been recognized for decades, the precise relationship between GALE activity and galactose sensitivity has remained unclear. Here we have explored this relationship by asking the following. 1) Is GALE rate-limiting for galactose metabolism in yeast? 2) What is the relationship between GALE activity and galactose-dependent growth arrest in yeast? 3) What is the relationship between GALE activity and the abnormal accumulation of galactose metabolites in yeast? To answer these questions we engineered a strain of yeast in which GALE was doxycycline-repressible and studied these cells under conditions of intermediate GALE expression. Our results demonstrated a smooth linear relationship between galactose metabolism and GALE activity over a range from 0 to approximately 5% but a steep threshold relationship between growth rate in galactose and GALE activity over the same range. The relationship between abnormal accumulation of metabolites and GALE activity was also linear over the range from 0 to approximately 5%, suggesting that if the abnormal accumulation of metabolites underlies galactose-dependent growth-arrest in GALE-impaired yeast, either the impact of individual metabolites must be synergistic and/or the threshold of sensitivity must be very steep. Together these data reveal important points of similarity and contrast between the roles of GALE and galactose-1-phosphate uridylyltransferase in galactose metabolism in yeast and provide a framework for future studies in mammalian systems.

UI MeSH Term Description Entries
D002457 Cell Extracts Preparations of cell constituents or subcellular materials, isolates, or substances. Cell Extract,Extract, Cell,Extracts, Cell
D004318 Doxycycline A synthetic tetracycline derivative with similar antimicrobial activity. 2-Naphthacenecarboxamide, 4-(dimethylamino)-1,4,4a,5,5a,6,11,12a-octahydro-3,5,10,12,12a-pentahydroxy-6-methyl-1,11-dioxo-, (4S-(4alpha,4aalpha,5alpha,5aalpha,6alpha,12aalpha))-,Alpha-6-Deoxyoxytetracycline,Atridox,BMY-28689,BU-3839T,Doryx,Doxycycline Calcium,Doxycycline Calcium Salt (1:2),Doxycycline Hemiethanolate,Doxycycline Hyclate,Doxycycline Monohydrate,Doxycycline Monohydrochloride, 6-epimer,Doxycycline Monohydrochloride, Dihydrate,Doxycycline Phosphate (1:1),Doxycycline-Chinoin,Hydramycin,Oracea,Periostat,Vibra-Tabs,Vibramycin,Vibramycin Novum,Vibravenos,Alpha 6 Deoxyoxytetracycline,BMY 28689,BMY28689,BU 3839T,BU3839T,Doxycycline Chinoin,Doxycycline Monohydrochloride, 6 epimer,Vibra Tabs
D005686 Galactokinase An enzyme that catalyzes reversibly the formation of galactose 1-phosphate and ADP from ATP and D-galactose. Galactosamine can also act as the acceptor. A deficiency of this enzyme results in GALACTOSEMIA. EC 2.7.1.6.
D005690 Galactose An aldohexose that occurs naturally in the D-form in lactose, cerebrosides, gangliosides, and mucoproteins. Deficiency of galactosyl-1-phosphate uridyltransferase (GALACTOSE-1-PHOSPHATE URIDYL-TRANSFERASE DEFICIENCY DISEASE) causes an error in galactose metabolism called GALACTOSEMIA, resulting in elevations of galactose in the blood. D-Galactose,Galactopyranose,Galactopyranoside,D Galactose
D005694 UTP-Hexose-1-Phosphate Uridylyltransferase An enzyme that catalyzes the synthesis of UDPgalactose from UTP and galactose-1-phosphate. It is present in low levels in fetal and infant liver, but increases with age, thereby enabling galactosemic infants who survive to develop the capacity to metabolize galactose. EC 2.7.7.10. Galactosephosphate Uridylyltransferase,UDP Galactose Pyrophosphorylase,Galactose-1-Phosphate Uridyltransferase,Galactose 1 Phosphate Uridyltransferase,Galactose Pyrophosphorylase, UDP,Pyrophosphorylase, UDP Galactose,UTP Hexose 1 Phosphate Uridylyltransferase,Uridyltransferase, Galactose-1-Phosphate,Uridylyltransferase, Galactosephosphate,Uridylyltransferase, UTP-Hexose-1-Phosphate
D005800 Genes, Fungal The functional hereditary units of FUNGI. Fungal Genes,Fungal Gene,Gene, Fungal
D012441 Saccharomyces cerevisiae A species of the genus SACCHAROMYCES, family Saccharomycetaceae, order Saccharomycetales, known as "baker's" or "brewer's" yeast. The dried form is used as a dietary supplement. Baker's Yeast,Brewer's Yeast,Candida robusta,S. cerevisiae,Saccharomyces capensis,Saccharomyces italicus,Saccharomyces oviformis,Saccharomyces uvarum var. melibiosus,Yeast, Baker's,Yeast, Brewer's,Baker Yeast,S cerevisiae,Baker's Yeasts,Yeast, Baker
D012995 Solubility The ability of a substance to be dissolved, i.e. to form a solution with another substance. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed) Solubilities
D014534 UDPglucose 4-Epimerase A necessary enzyme in the metabolism of galactose. It reversibly catalyzes the conversion of UDPglucose to UDPgalactose. NAD+ is an essential component for enzymatic activity. EC 5.1.3.2. UDP Galactose Epimerase,UDP Glucose Epimerase,UDPgalactose 4-Epimerase,Uridine Diphosphate Glucose Epimerase,UDP-Galactose 4-Epimerase,UDP-Glucose 4-Epimerase,4-Epimerase, UDP-Galactose,4-Epimerase, UDP-Glucose,4-Epimerase, UDPgalactose,4-Epimerase, UDPglucose,Epimerase, UDP Galactose,Epimerase, UDP Glucose,Galactose Epimerase, UDP,Glucose Epimerase, UDP,UDP Galactose 4 Epimerase,UDP Glucose 4 Epimerase,UDPgalactose 4 Epimerase,UDPglucose 4 Epimerase
D015966 Gene Expression Regulation, Fungal Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control of gene action in fungi. Fungal Gene Expression Regulation,Regulation of Gene Expression, Fungal,Regulation, Gene Expression, Fungal

Related Publications

Jamie Wasilenko, and Judith L Fridovich-Keil
May 1976, Analytical biochemistry,
Jamie Wasilenko, and Judith L Fridovich-Keil
January 1998, Ryoikibetsu shokogun shirizu,
Jamie Wasilenko, and Judith L Fridovich-Keil
April 2005, The Journal of biological chemistry,
Jamie Wasilenko, and Judith L Fridovich-Keil
November 1982, Clinical chemistry,
Jamie Wasilenko, and Judith L Fridovich-Keil
September 1993, Biochemistry,
Jamie Wasilenko, and Judith L Fridovich-Keil
April 1970, The Journal of biological chemistry,
Jamie Wasilenko, and Judith L Fridovich-Keil
April 2016, Zhonghua er ke za zhi = Chinese journal of pediatrics,
Jamie Wasilenko, and Judith L Fridovich-Keil
December 1969, Brain research,
Jamie Wasilenko, and Judith L Fridovich-Keil
July 2013, Accounts of chemical research,
Copied contents to your clipboard!