Mechanism of blockade of neuromuscular transmission by pentobarbital. 1975

I Seyama, and T Narahashi

The mechanism of block of neuromuscular transmission by pentobarbital has been studied in the frog sciatic nerve-sartorius muscle preparation by means of intracellular microelectrode and voltage clamp techniques. The resting membrane potential was decreased by pentobarbital only to a small extent (less than 15 mV) in both end-plate and non-end-plate regions. Both sodium and potassium components of end-plate current underwent drastic changes after application of pentobarbital. The peak amplitude was decreased with an apparent dissociation constant of 0.9 mM for both currents. The maximum rate of rise of end-plate current was reduced, with apparent dissociation constants of 0.9 and 1.2 mM for sodium and potassium currents, respectively. The times for sodium and potassium end-plate current to reach their peaks were shortened only to a negligible extent. The falling phase of end-plate current was greatly accelerated, sodium current being affected more than potassium current. The transient end-plate depolarization induced by iontophoretic application of acetylcholine was suppressed more effectively than end-plate potential by application of pentobarbital. The falling phase of the former was also shortened. The quantal content of end-plate potential tended to increase at 0.5 mM, but underwent no appreciable change at 1.0 and 1.4 mM. Pentobarbital has a dual action on both quantal content and end-plate membrane depending on the concentration, and the block of neuromuscular transmission is due primarily to a suppression of the end-plate sensitivity to acetylcholine. The differential effect of pentobarbital on sodium and potassium components of end-plate current is compatible with the notion that these two ionic conductances are separate entities.

UI MeSH Term Description Entries
D007478 Iontophoresis Therapeutic introduction of ions of soluble salts into tissues by means of electric current. In medical literature it is commonly used to indicate the process of increasing the penetration of drugs into surface tissues by the application of electric current. It has nothing to do with ION EXCHANGE; AIR IONIZATION nor PHONOPHORESIS, none of which requires current. Iontophoreses
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D008839 Microelectrodes Electrodes with an extremely small tip, used in a voltage clamp or other apparatus to stimulate or record bioelectric potentials of single cells intracellularly or extracellularly. (Dorland, 28th ed) Electrodes, Miniaturized,Electrode, Miniaturized,Microelectrode,Miniaturized Electrode,Miniaturized Electrodes
D009045 Motor Endplate The specialized postsynaptic region of a muscle cell. The motor endplate is immediately across the synaptic cleft from the presynaptic axon terminal. Among its anatomical specializations are junctional folds which harbor a high density of cholinergic receptors. Motor End-Plate,End-Plate, Motor,End-Plates, Motor,Endplate, Motor,Endplates, Motor,Motor End Plate,Motor End-Plates,Motor Endplates
D009119 Muscle Contraction A process leading to shortening and/or development of tension in muscle tissue. Muscle contraction occurs by a sliding filament mechanism whereby actin filaments slide inward among the myosin filaments. Inotropism,Muscular Contraction,Contraction, Muscle,Contraction, Muscular,Contractions, Muscle,Contractions, Muscular,Inotropisms,Muscle Contractions,Muscular Contractions
D009132 Muscles Contractile tissue that produces movement in animals. Muscle Tissue,Muscle,Muscle Tissues,Tissue, Muscle,Tissues, Muscle
D009435 Synaptic Transmission The communication from a NEURON to a target (neuron, muscle, or secretory cell) across a SYNAPSE. In chemical synaptic transmission, the presynaptic neuron releases a NEUROTRANSMITTER that diffuses across the synaptic cleft and binds to specific synaptic receptors, activating them. The activated receptors modulate specific ion channels and/or second-messenger systems in the postsynaptic cell. In electrical synaptic transmission, electrical signals are communicated as an ionic current flow across ELECTRICAL SYNAPSES. Neural Transmission,Neurotransmission,Transmission, Neural,Transmission, Synaptic
D009466 Neuromuscular Blocking Agents Drugs that interrupt transmission of nerve impulses at the skeletal neuromuscular junction. They can be of two types, competitive, stabilizing blockers (NEUROMUSCULAR NONDEPOLARIZING AGENTS) or noncompetitive, depolarizing agents (NEUROMUSCULAR DEPOLARIZING AGENTS). Both prevent acetylcholine from triggering the muscle contraction and they are used as anesthesia adjuvants, as relaxants during electroshock, in convulsive states, etc. Neuromuscular Blocker,Neuromuscular Blocking Agent,Neuromuscular Blockers,Agent, Neuromuscular Blocking,Agents, Neuromuscular Blocking,Blocker, Neuromuscular,Blockers, Neuromuscular,Blocking Agent, Neuromuscular,Blocking Agents, Neuromuscular
D009469 Neuromuscular Junction The synapse between a neuron and a muscle. Myoneural Junction,Nerve-Muscle Preparation,Junction, Myoneural,Junction, Neuromuscular,Junctions, Myoneural,Junctions, Neuromuscular,Myoneural Junctions,Nerve Muscle Preparation,Nerve-Muscle Preparations,Neuromuscular Junctions,Preparation, Nerve-Muscle,Preparations, Nerve-Muscle
D010424 Pentobarbital A short-acting barbiturate that is effective as a sedative and hypnotic (but not as an anti-anxiety) agent and is usually given orally. It is prescribed more frequently for sleep induction than for sedation but, like similar agents, may lose its effectiveness by the second week of continued administration. (From AMA Drug Evaluations Annual, 1994, p236) Mebubarbital,Mebumal,Diabutal,Etaminal,Ethaminal,Nembutal,Pentobarbital Sodium,Pentobarbital, Monosodium Salt,Pentobarbitone,Sagatal,Monosodium Salt Pentobarbital

Related Publications

I Seyama, and T Narahashi
February 1982, European journal of pharmacology,
I Seyama, and T Narahashi
February 1962, Nature,
I Seyama, and T Narahashi
March 1971, The Journal of pharmacy and pharmacology,
I Seyama, and T Narahashi
April 1969, The American journal of physiology,
I Seyama, and T Narahashi
December 1985, Brain research,
I Seyama, and T Narahashi
January 1974, Indian journal of physiology and pharmacology,
I Seyama, and T Narahashi
February 1974, Japanese journal of pharmacology,
I Seyama, and T Narahashi
December 1963, Archives internationales de pharmacodynamie et de therapie,
I Seyama, and T Narahashi
February 1978, Proceedings of the National Academy of Sciences of the United States of America,
Copied contents to your clipboard!