Chronic morphine treatment alters expression of N-methyl-D-aspartate receptor subunits in the extended amygdala. 2006

Michal Bajo, and Elena F Crawford, and Marisa Roberto, and Samuel G Madamba, and George Robert Siggins
Molecular and Integrative Neurosciences Department, The Scripps Research Institute, La Jolla, California 92037, USA.

The nucleus accumbens (NAcc) and central amygdala (CeA) are parts of the extended amygdala, a complex that plays a key role in drug abuse and dependence. Our previous studies showed that opiates and ethanol alter glutamatergic transmission in these regions. N-methyl-D-aspartate (NMDA) receptors are key components of glutamatergic transmission likely involved in the development of opiate tolerance and dependence. In this study we examined the effects of chronic morphine administration on gene and protein expression of three major NMDA receptors subunits (NR1, NR2A, and NR2B) in NAcc and CeA. Real-time PCR showed no differences in mRNA levels of any of the subunits in the whole NAcc between naïve and morphine-dependent rats. However, at the protein level, immunoblotting revealed that chronic morphine significantly increased levels of NR1 and NR2B subunits. In contrast to the case for NAcc, in CeA we found an increased mRNA level for the NR1 subunit only but unchanged protein levels of all three subunits in morphine-dependent rats. The altered expressions of NMDA receptor subunits, especially in NAcc, of morphine-dependent rats may represent a neuroadaptation to chronic morphine and suggest a mechanism for the changes of glutamatergic transmission found in the extended amygdala in dependent rats. In addition, our results indicate a region-specific response of NMDA receptor subunits to chronic morphine administration at the gene and protein levels.

UI MeSH Term Description Entries
D008297 Male Males
D009020 Morphine The principal alkaloid in opium and the prototype opiate analgesic and narcotic. Morphine has widespread effects in the central nervous system and on smooth muscle. Morphine Sulfate,Duramorph,MS Contin,Morphia,Morphine Chloride,Morphine Sulfate (2:1), Anhydrous,Morphine Sulfate (2:1), Pentahydrate,Oramorph SR,SDZ 202-250,SDZ202-250,Chloride, Morphine,Contin, MS,SDZ 202 250,SDZ 202250,SDZ202 250,SDZ202250,Sulfate, Morphine
D009021 Morphine Dependence Strong dependence, both physiological and emotional, upon morphine. Morphine Abuse,Morphine Addiction,Abuse, Morphine,Addiction, Morphine,Dependence, Morphine
D009294 Narcotics Agents that induce NARCOSIS. Narcotics include agents that cause somnolence or induced sleep (STUPOR); natural or synthetic derivatives of OPIUM or MORPHINE or any substance that has such effects. They are potent inducers of ANALGESIA and OPIOID-RELATED DISORDERS. Analgesics, Narcotic,Narcotic Analgesics,Narcotic,Narcotic Effect,Narcotic Effects,Effect, Narcotic,Effects, Narcotic
D009714 Nucleus Accumbens Collection of pleomorphic cells in the caudal part of the anterior horn of the LATERAL VENTRICLE, in the region of the OLFACTORY TUBERCLE, lying between the head of the CAUDATE NUCLEUS and the ANTERIOR PERFORATED SUBSTANCE. It is part of the so-called VENTRAL STRIATUM, a composite structure considered part of the BASAL GANGLIA. Accumbens Nucleus,Nucleus Accumbens Septi,Accumbens Septi, Nucleus,Accumbens Septus, Nucleus,Accumbens, Nucleus,Nucleus Accumbens Septus,Nucleus, Accumbens,Septi, Nucleus Accumbens,Septus, Nucleus Accumbens
D000199 Actins Filamentous proteins that are the main constituent of the thin filaments of muscle fibers. The filaments (known also as filamentous or F-actin) can be dissociated into their globular subunits; each subunit is composed of a single polypeptide 375 amino acids long. This is known as globular or G-actin. In conjunction with MYOSINS, actin is responsible for the contraction and relaxation of muscle. F-Actin,G-Actin,Actin,Isoactin,N-Actin,alpha-Actin,alpha-Isoactin,beta-Actin,gamma-Actin,F Actin,G Actin,N Actin,alpha Actin,alpha Isoactin,beta Actin,gamma Actin
D000679 Amygdala Almond-shaped group of basal nuclei anterior to the INFERIOR HORN OF THE LATERAL VENTRICLE of the TEMPORAL LOBE. The amygdala is part of the limbic system. Amygdaloid Body,Amygdaloid Nuclear Complex,Amygdaloid Nucleus,Archistriatum,Corpus Amygdaloideum,Intercalated Amygdaloid Nuclei,Massa Intercalata,Nucleus Amygdalae,Amygdalae, Nucleus,Amygdaloid Bodies,Amygdaloid Nuclear Complices,Amygdaloid Nuclei, Intercalated,Amygdaloid Nucleus, Intercalated,Amygdaloideum, Corpus,Amygdaloideums, Corpus,Archistriatums,Complex, Amygdaloid Nuclear,Complices, Amygdaloid Nuclear,Corpus Amygdaloideums,Intercalata, Massa,Intercalatas, Massa,Intercalated Amygdaloid Nucleus,Massa Intercalatas,Nuclear Complex, Amygdaloid,Nuclear Complices, Amygdaloid,Nuclei, Intercalated Amygdaloid,Nucleus, Amygdaloid,Nucleus, Intercalated Amygdaloid
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D015153 Blotting, Western Identification of proteins or peptides that have been electrophoretically separated by blot transferring from the electrophoresis gel to strips of nitrocellulose paper, followed by labeling with antibody probes. Immunoblotting, Western,Western Blotting,Western Immunoblotting,Blot, Western,Immunoblot, Western,Western Blot,Western Immunoblot,Blots, Western,Blottings, Western,Immunoblots, Western,Immunoblottings, Western,Western Blots,Western Blottings,Western Immunoblots,Western Immunoblottings
D015870 Gene Expression The phenotypic manifestation of a gene or genes by the processes of GENETIC TRANSCRIPTION and GENETIC TRANSLATION. Expression, Gene,Expressions, Gene,Gene Expressions

Related Publications

Michal Bajo, and Elena F Crawford, and Marisa Roberto, and Samuel G Madamba, and George Robert Siggins
April 1997, Neuroscience,
Michal Bajo, and Elena F Crawford, and Marisa Roberto, and Samuel G Madamba, and George Robert Siggins
January 2005, Acta neurochirurgica. Supplement,
Michal Bajo, and Elena F Crawford, and Marisa Roberto, and Samuel G Madamba, and George Robert Siggins
October 2004, The Journal of pharmacology and experimental therapeutics,
Michal Bajo, and Elena F Crawford, and Marisa Roberto, and Samuel G Madamba, and George Robert Siggins
June 2018, Neuroscience bulletin,
Michal Bajo, and Elena F Crawford, and Marisa Roberto, and Samuel G Madamba, and George Robert Siggins
July 2007, Molecular pharmacology,
Michal Bajo, and Elena F Crawford, and Marisa Roberto, and Samuel G Madamba, and George Robert Siggins
July 1997, Neuroscience,
Michal Bajo, and Elena F Crawford, and Marisa Roberto, and Samuel G Madamba, and George Robert Siggins
July 2003, Brain research. Molecular brain research,
Michal Bajo, and Elena F Crawford, and Marisa Roberto, and Samuel G Madamba, and George Robert Siggins
August 1995, The Journal of biological chemistry,
Michal Bajo, and Elena F Crawford, and Marisa Roberto, and Samuel G Madamba, and George Robert Siggins
April 2002, Journal of neuroscience research,
Michal Bajo, and Elena F Crawford, and Marisa Roberto, and Samuel G Madamba, and George Robert Siggins
July 1996, Neuroscience,
Copied contents to your clipboard!