Pentazocine-induced biphasic analgesia in mice. 1991

T Suzuki, and M Narita, and M Misawa, and H Nagase
Department of Applied Pharmacology, School of Pharmacy, Hoshi University, Tokyo, Japan.

Pentazocine (PZ) is well known to act as an opioid mixed agonist-antagonist analgesic. In the present study, we selected the mouse warm plate test condition of 51 +/- 0.5 degrees C instead of 55 +/- 0.5 degrees C to determine the analgesic action of PZ. As a result, i.c.v. PZ produced a biphasic antinociceptive response, while U-50,488H (U-50) and morphine (MRP) showed a monophasic response. Pretreatment with i.c.v. beta-FNA (mu antagonist) antagonized the initial response, whereas the delayed one was antagonized by pretreatment with nor-BNI (kappa antagonist). In addition, pretreatment with NTI (delta antagonist) significantly attenuated the initial response but not the delayed one. These results suggest that the initial and delayed responses may be mediated mainly by mu/delta and kappa receptors, respectively. With regards to the interaction between MRP and PZ, a low dose of PZ antagonized the analgesic action of MRP, while a high dose PZ plus MRP showed the additive effect. Furthermore, tolerance developed almost equally to both initial and delayed responses, indicating that tolerance to the kappa component of PZ may be developed as well as the mu component of action of PZ.

UI MeSH Term Description Entries
D007211 Indoles Benzopyrroles with the nitrogen at the number one carbon adjacent to the benzyl portion, in contrast to ISOINDOLES which have the nitrogen away from the six-membered ring.
D007276 Injections, Intraventricular Injections into the cerebral ventricles. Intraventricular Injections,Injection, Intraventricular,Intraventricular Injection
D008297 Male Males
D009019 Morphinans Compounds based on a partially saturated iminoethanophenanthrene, which can be described as ethylimino-bridged benzo-decahydronaphthalenes. They include some of the OPIOIDS found in PAPAVER that are used as ANALGESICS. Morphinan
D009020 Morphine The principal alkaloid in opium and the prototype opiate analgesic and narcotic. Morphine has widespread effects in the central nervous system and on smooth muscle. Morphine Sulfate,Duramorph,MS Contin,Morphia,Morphine Chloride,Morphine Sulfate (2:1), Anhydrous,Morphine Sulfate (2:1), Pentahydrate,Oramorph SR,SDZ 202-250,SDZ202-250,Chloride, Morphine,Contin, MS,SDZ 202 250,SDZ 202250,SDZ202 250,SDZ202250,Sulfate, Morphine
D009271 Naltrexone Derivative of noroxymorphone that is the N-cyclopropylmethyl congener of NALOXONE. It is a narcotic antagonist that is effective orally, longer lasting and more potent than naloxone, and has been proposed for the treatment of heroin addiction. The FDA has approved naltrexone for the treatment of alcohol dependence. Antaxone,Celupan,EN-1639A,Nalorex,Naltrexone Hydrochloride,Nemexin,ReVia,Trexan,EN 1639A,EN1639A
D009292 Narcotic Antagonists Agents inhibiting the effect of narcotics on the central nervous system. Competitive Opioid Antagonist,Narcotic Antagonist,Opioid Antagonist,Opioid Antagonists,Opioid Receptor Antagonist,Opioid Reversal Agent,Competitive Opioid Antagonists,Opioid Receptor Antagonists,Opioid Reversal Agents,Agent, Opioid Reversal,Agents, Opioid Reversal,Antagonist, Competitive Opioid,Antagonist, Narcotic,Antagonist, Opioid,Antagonist, Opioid Receptor,Antagonists, Competitive Opioid,Antagonists, Narcotic,Antagonists, Opioid,Antagonists, Opioid Receptor,Opioid Antagonist, Competitive,Opioid Antagonists, Competitive,Receptor Antagonist, Opioid,Receptor Antagonists, Opioid,Reversal Agent, Opioid,Reversal Agents, Opioid
D010423 Pentazocine The first mixed agonist-antagonist analgesic to be marketed. It is an agonist at the kappa and sigma opioid receptors and has a weak antagonist action at the mu receptor. (From AMA Drug Evaluations Annual, 1991, p97) Fortral,Lexir,Pentazocine Hydrochloride,Pentazocine Lactate,Talwin,Hydrochloride, Pentazocine,Lactate, Pentazocine
D011759 Pyrrolidines Compounds also known as tetrahydropyridines with general molecular formula (CH2)4NH. Tetrahydropyridine,Tetrahydropyridines
D011957 Receptors, Opioid Cell membrane proteins that bind opioids and trigger intracellular changes which influence the behavior of cells. The endogenous ligands for opioid receptors in mammals include three families of peptides, the enkephalins, endorphins, and dynorphins. The receptor classes include mu, delta, and kappa receptors. Sigma receptors bind several psychoactive substances, including certain opioids, but their endogenous ligands are not known. Endorphin Receptors,Enkephalin Receptors,Narcotic Receptors,Opioid Receptors,Receptors, Endorphin,Receptors, Enkephalin,Receptors, Narcotic,Receptors, Opiate,Endorphin Receptor,Enkephalin Receptor,Normorphine Receptors,Opiate Receptor,Opiate Receptors,Opioid Receptor,Receptors, Normorphine,Receptors, beta-Endorphin,beta-Endorphin Receptor,Receptor, Endorphin,Receptor, Enkephalin,Receptor, Opiate,Receptor, Opioid,Receptor, beta-Endorphin,Receptors, beta Endorphin,beta Endorphin Receptor,beta-Endorphin Receptors

Related Publications

T Suzuki, and M Narita, and M Misawa, and H Nagase
December 1995, European journal of pharmacology,
T Suzuki, and M Narita, and M Misawa, and H Nagase
January 1968, Acta anaesthesiologica,
T Suzuki, and M Narita, and M Misawa, and H Nagase
April 1972, Deutsche medizinische Wochenschrift (1946),
T Suzuki, and M Narita, and M Misawa, and H Nagase
June 1982, Japanese journal of pharmacology,
T Suzuki, and M Narita, and M Misawa, and H Nagase
April 1970, Prensa medica argentina,
T Suzuki, and M Narita, and M Misawa, and H Nagase
February 1971, The Journal of the American Osteopathic Association,
T Suzuki, and M Narita, and M Misawa, and H Nagase
February 1968, Ginecologia y obstetricia de Mexico,
T Suzuki, and M Narita, and M Misawa, and H Nagase
February 1992, Pain,
T Suzuki, and M Narita, and M Misawa, and H Nagase
February 1984, European journal of pharmacology,
T Suzuki, and M Narita, and M Misawa, and H Nagase
January 1988, Psychopharmacology,
Copied contents to your clipboard!