Inactivation of xanthine oxidase by hydrogen peroxide involves site-directed hydroxyl radical formation. 1991

L S Terada, and J A Leff, and D M Guidot, and I R Willingham, and J E Repine
Webb-Waring Lung Institute, University of Colorado Health Sciences Center, Denver 80262.

The mechanism of xanthine oxidase (XO) inactivation by hydrogen peroxide (H2O2) and its biologic significance are unclear. We found that addition of increasing concentrations of H2O2 progressively decreased xanthine oxidase activity in the presence but not the absence of xanthine in vitro. Inactivation of XO by H2O2 was also enhanced by anaerobic reduction of XO by xanthine. Inactivation of XO by H2O2 was accompanied by production of hydroxyl radical (.OH), measured as formation of formaldehyde from dimethylsulfoxide (DMSO). In contrast, addition of H2O2 to deflavo XO did not produce .OH. Inactivation of XO by H2O2 was decreased by simultaneous addition of the .OH scavenger, DMSO. However, inactivation of XO by H2O2 and formation of .OH were not decreased following addition of the metal chelator. DETAPAC, and/or the O2 scavenger, superoxide dismutase. The results suggest that inactivation of XO by H2O2 occurs by production of .OH following direct reduction of H2O2 by XO at the flavin site.

UI MeSH Term Description Entries
D004121 Dimethyl Sulfoxide A highly polar organic liquid, that is used widely as a chemical solvent. Because of its ability to penetrate biological membranes, it is used as a vehicle for topical application of pharmaceuticals. It is also used to protect tissue during CRYOPRESERVATION. Dimethyl sulfoxide shows a range of pharmacological activity including analgesia and anti-inflammation. DMSO,Dimethyl Sulphoxide,Dimethylsulfoxide,Dimethylsulphinyl,Dimethylsulphoxide,Dimexide,Rheumabene,Rimso,Rimso 100,Rimso-50,Sclerosol,Sulfinylbis(methane),Rimso 50,Rimso50,Sulfoxide, Dimethyl,Sulphoxide, Dimethyl
D004369 Pentetic Acid An iron chelating agent with properties like EDETIC ACID. DTPA has also been used as a chelator for other metals, such as plutonium. DTPA,Diethylenetriamine Pentaacetic Acid,Pentetates,Penthanil,Ca-DTPA,CaDTPA,CaNa-DTPA,Calcium Trisodium Pentetate,DETAPAC,Indium-DTPA,Mn-Dtpa,Pentacin,Pentacine,Pentaind,Pentetate Calcium Trisodium,Pentetate Zinc Trisodium,Sn-DTPA,Zinc-DTPA,Indium DTPA,Pentaacetic Acid, Diethylenetriamine,Pentetate, Calcium Trisodium,Zinc DTPA
D004789 Enzyme Activation Conversion of an inactive form of an enzyme to one possessing metabolic activity. It includes 1, activation by ions (activators); 2, activation by cofactors (coenzymes); and 3, conversion of an enzyme precursor (proenzyme or zymogen) to an active enzyme. Activation, Enzyme,Activations, Enzyme,Enzyme Activations
D005557 Formaldehyde A highly reactive aldehyde gas formed by oxidation or incomplete combustion of hydrocarbons. In solution, it has a wide range of uses: in the manufacture of resins and textiles, as a disinfectant, and as a laboratory fixative or preservative. Formaldehyde solution (formalin) is considered a hazardous compound, and its vapor toxic. (From Reynolds, Martindale The Extra Pharmacopoeia, 30th ed, p717) Formalin,Formol,Methanal,Oxomethane
D006861 Hydrogen Peroxide A strong oxidizing agent used in aqueous solution as a ripening agent, bleach, and topical anti-infective. It is relatively unstable and solutions deteriorate over time unless stabilized by the addition of acetanilide or similar organic materials. Hydrogen Peroxide (H2O2),Hydroperoxide,Oxydol,Perhydrol,Superoxol,Peroxide, Hydrogen
D006878 Hydroxides Inorganic compounds that contain the OH- group.
D013379 Substrate Specificity A characteristic feature of enzyme activity in relation to the kind of substrate on which the enzyme or catalytic molecule reacts. Specificities, Substrate,Specificity, Substrate,Substrate Specificities
D013482 Superoxide Dismutase An oxidoreductase that catalyzes the reaction between SUPEROXIDES and hydrogen to yield molecular oxygen and hydrogen peroxide. The enzyme protects the cell against dangerous levels of superoxide. Hemocuprein,Ag-Zn Superoxide Dismutase,Cobalt Superoxide Dismutase,Cu-Superoxide Dismutase,Erythrocuprein,Fe-Superoxide Dismutase,Fe-Zn Superoxide Dismutase,Iron Superoxide Dismutase,Manganese Superoxide Dismutase,Mn-SOD,Mn-Superoxide Dismutase,Ag Zn Superoxide Dismutase,Cu Superoxide Dismutase,Dismutase, Ag-Zn Superoxide,Dismutase, Cobalt Superoxide,Dismutase, Cu-Superoxide,Dismutase, Fe-Superoxide,Dismutase, Fe-Zn Superoxide,Dismutase, Iron Superoxide,Dismutase, Manganese Superoxide,Dismutase, Mn-Superoxide,Dismutase, Superoxide,Fe Superoxide Dismutase,Fe Zn Superoxide Dismutase,Mn SOD,Mn Superoxide Dismutase,Superoxide Dismutase, Ag-Zn,Superoxide Dismutase, Cobalt,Superoxide Dismutase, Fe-Zn,Superoxide Dismutase, Iron,Superoxide Dismutase, Manganese
D014969 Xanthine Oxidase An iron-molybdenum flavoprotein containing FLAVIN-ADENINE DINUCLEOTIDE that oxidizes hypoxanthine, some other purines and pterins, and aldehydes. Deficiency of the enzyme, an autosomal recessive trait, causes xanthinuria. Hypoxanthine Oxidase,Hypoxanthine Dehydrogenase,Hypoxanthine-Xanthine Oxidase,Purine-Xanthine Oxidase,Dehydrogenase, Hypoxanthine,Hypoxanthine Xanthine Oxidase,Oxidase, Hypoxanthine,Oxidase, Hypoxanthine-Xanthine,Oxidase, Purine-Xanthine,Oxidase, Xanthine,Purine Xanthine Oxidase
D016166 Free Radical Scavengers Substances that eliminate free radicals. Among other effects, they protect PANCREATIC ISLETS against damage by CYTOKINES and prevent myocardial and pulmonary REPERFUSION INJURY. Free Radical Scavenger,Radical Scavenger, Free,Scavenger, Free Radical,Scavengers, Free Radical

Related Publications

L S Terada, and J A Leff, and D M Guidot, and I R Willingham, and J E Repine
March 1967, Biochimica et biophysica acta,
L S Terada, and J A Leff, and D M Guidot, and I R Willingham, and J E Repine
November 1995, International journal of radiation biology,
L S Terada, and J A Leff, and D M Guidot, and I R Willingham, and J E Repine
May 1983, Biochemistry,
L S Terada, and J A Leff, and D M Guidot, and I R Willingham, and J E Repine
December 1979, Biochimica et biophysica acta,
L S Terada, and J A Leff, and D M Guidot, and I R Willingham, and J E Repine
July 2005, The journal of physical chemistry. A,
L S Terada, and J A Leff, and D M Guidot, and I R Willingham, and J E Repine
January 1988, Free radical research communications,
L S Terada, and J A Leff, and D M Guidot, and I R Willingham, and J E Repine
May 1975, Analytical biochemistry,
L S Terada, and J A Leff, and D M Guidot, and I R Willingham, and J E Repine
September 2006, Journal of the American Chemical Society,
L S Terada, and J A Leff, and D M Guidot, and I R Willingham, and J E Repine
April 1981, Biochemical and biophysical research communications,
L S Terada, and J A Leff, and D M Guidot, and I R Willingham, and J E Repine
June 1989, The Journal of biological chemistry,
Copied contents to your clipboard!