The role of cyclic AMP in chemoreception in the rabbit carotid body. 1991

W J Wang, and G F Cheng, and K Yoshizaki, and B Dinger, and S Fidone
Department of Physiology, University of Utah School of Medicine, Salt Lake City 84108.

The present study identified physiological factors which influence the generation (and degradation) of cyclic AMP (cAMP) in the arterial chemoreceptor tissue of the mammalian carotid body. Experiments established a 3-way correlation between cAMP generation, neurotransmitter release from chemoreceptor cells, and carotid sinus nerve (CSN) activity. Incubation of carotid bodies in vitro for 10 min in media equilibrated with different low O2 ('hypoxic') gas mixtures (5% O2 or 10% O2, balance N2) elevated basal cAMP levels (100% O2 media) in proportion to the stimulus intensity. Similar experiments using nodose sensory ganglia showed that low O2 stimulation did not alter cAMP levels in this non-chemosensory tissue. However, the adenylate cyclase (AC) activator, forskolin (10 microM), evoked large increases in the cyclic nucleotide content in both carotid bodies and nodose ganglia. After chronic (10 days) CSN denervation or sympathectomy, the basal levels of cAMP in the carotid body were elevated; the cAMP response to low O2 media (stimulus minus control) was increased after CSN denervation but remained unaltered after sympathectomy. The effects of zero Ca2+ media on cAMP generation was examined in order to assess whether feedback from released neurotransmitters acting on known (presynaptic) type I cell receptors could have contributed to the observed changes in cAMP. Basal levels of cAMP were increased 2.8-fold, and the response to hypoxic stimulation was elevated 5-fold, in the absence of extracellular Ca2+. Forskolin (10 microM) did not alter basal release of [3H]-catecholamines ([3H]CA; synthesized from [3H]tyrosine), or resting CSN discharge; however, stimulus-evoked [3H]CA release and CSN discharge were potentiated in the presence of forskolin.(ABSTRACT TRUNCATED AT 250 WORDS)

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D009620 Nodose Ganglion The inferior (caudal) ganglion of the vagus (10th cranial) nerve. The unipolar nodose ganglion cells are sensory cells with central projections to the medulla and peripheral processes traveling in various branches of the vagus nerve. Nodose Ganglia,Ganglia, Nodose,Ganglion, Nodose
D009638 Norepinephrine Precursor of epinephrine that is secreted by the ADRENAL MEDULLA and is a widespread central and autonomic neurotransmitter. Norepinephrine is the principal transmitter of most postganglionic sympathetic fibers, and of the diffuse projection system in the brain that arises from the LOCUS CERULEUS. It is also found in plants and is used pharmacologically as a sympathomimetic. Levarterenol,Levonorepinephrine,Noradrenaline,Arterenol,Levonor,Levophed,Levophed Bitartrate,Noradrenaline Bitartrate,Noradrénaline tartrate renaudin,Norepinephrin d-Tartrate (1:1),Norepinephrine Bitartrate,Norepinephrine Hydrochloride,Norepinephrine Hydrochloride, (+)-Isomer,Norepinephrine Hydrochloride, (+,-)-Isomer,Norepinephrine d-Tartrate (1:1),Norepinephrine l-Tartrate (1:1),Norepinephrine l-Tartrate (1:1), (+,-)-Isomer,Norepinephrine l-Tartrate (1:1), Monohydrate,Norepinephrine l-Tartrate (1:1), Monohydrate, (+)-Isomer,Norepinephrine l-Tartrate (1:2),Norepinephrine l-Tartrate, (+)-Isomer,Norepinephrine, (+)-Isomer,Norepinephrine, (+,-)-Isomer
D011817 Rabbits A burrowing plant-eating mammal with hind limbs that are longer than its fore limbs. It belongs to the family Leporidae of the order Lagomorpha, and in contrast to hares, possesses 22 instead of 24 pairs of chromosomes. Belgian Hare,New Zealand Rabbit,New Zealand Rabbits,New Zealand White Rabbit,Rabbit,Rabbit, Domestic,Chinchilla Rabbits,NZW Rabbits,New Zealand White Rabbits,Oryctolagus cuniculus,Chinchilla Rabbit,Domestic Rabbit,Domestic Rabbits,Hare, Belgian,NZW Rabbit,Rabbit, Chinchilla,Rabbit, NZW,Rabbit, New Zealand,Rabbits, Chinchilla,Rabbits, Domestic,Rabbits, NZW,Rabbits, New Zealand,Zealand Rabbit, New,Zealand Rabbits, New,cuniculus, Oryctolagus
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002344 Carotid Body A small cluster of chemoreceptive and supporting cells located near the bifurcation of the internal carotid artery. The carotid body, which is richly supplied with fenestrated capillaries, senses the pH, carbon dioxide, and oxygen concentrations in the blood and plays a crucial role in their homeostatic control. Glomus Caroticum,Bodies, Carotid,Body, Carotid,Caroticum, Glomus,Carotid Bodies
D002346 Carotid Sinus The dilated portion of the common carotid artery at its bifurcation into external and internal carotids. It contains baroreceptors which, when stimulated, cause slowing of the heart, vasodilatation, and a fall in blood pressure. Sinus, Carotid
D002628 Chemoreceptor Cells Cells specialized to detect chemical substances and relay that information centrally in the nervous system. Chemoreceptor cells may monitor external stimuli, as in TASTE and OLFACTION, or internal stimuli, such as the concentrations of OXYGEN and CARBON DIOXIDE in the blood. Chemoreceptive Cells,Cell, Chemoreceptive,Cell, Chemoreceptor,Cells, Chemoreceptive,Cells, Chemoreceptor,Chemoreceptive Cell,Chemoreceptor Cell
D003714 Denervation The resection or removal of the nerve to an organ or part. Laser Neurectomy,Neurectomy,Peripheral Neurectomy,Radiofrequency Neurotomy,Denervations,Laser Neurectomies,Neurectomies,Neurectomies, Laser,Neurectomies, Peripheral,Neurectomy, Laser,Neurectomy, Peripheral,Neurotomies, Radiofrequency,Neurotomy, Radiofrequency,Peripheral Neurectomies,Radiofrequency Neurotomies
D003994 Bucladesine A cyclic nucleotide derivative that mimics the action of endogenous CYCLIC AMP and is capable of permeating the cell membrane. It has vasodilator properties and is used as a cardiac stimulant. (From Merck Index, 11th ed) Dibutyryl Adenosine-3',5'-Monophosphate,Dibutyryl Cyclic AMP,(But)(2) cAMP,Bucladesine, Barium (1:1) Salt,Bucladesine, Disodium Salt,Bucladesine, Monosodium Salt,Bucladesine, Sodium Salt,DBcAMP,Dibutyryl Adenosine 3,5 Monophosphate,N',O'-Dibutyryl-cAMP,N(6),0(2')-Dibutyryl Cyclic AMP,AMP, Dibutyryl Cyclic,Adenosine-3',5'-Monophosphate, Dibutyryl,Cyclic AMP, Dibutyryl,Dibutyryl Adenosine 3',5' Monophosphate,Disodium Salt Bucladesine,Monosodium Salt Bucladesine,N',O' Dibutyryl cAMP,Sodium Salt Bucladesine

Related Publications

W J Wang, and G F Cheng, and K Yoshizaki, and B Dinger, and S Fidone
January 1977, Advances in experimental medicine and biology,
W J Wang, and G F Cheng, and K Yoshizaki, and B Dinger, and S Fidone
June 1991, Biulleten' eksperimental'noi biologii i meditsiny,
W J Wang, and G F Cheng, and K Yoshizaki, and B Dinger, and S Fidone
January 1994, Advances in experimental medicine and biology,
W J Wang, and G F Cheng, and K Yoshizaki, and B Dinger, and S Fidone
March 1995, Proceedings of the National Academy of Sciences of the United States of America,
W J Wang, and G F Cheng, and K Yoshizaki, and B Dinger, and S Fidone
April 1982, The Journal of physiology,
W J Wang, and G F Cheng, and K Yoshizaki, and B Dinger, and S Fidone
March 1997, Journal of the autonomic nervous system,
W J Wang, and G F Cheng, and K Yoshizaki, and B Dinger, and S Fidone
October 1990, Journal of neurochemistry,
W J Wang, and G F Cheng, and K Yoshizaki, and B Dinger, and S Fidone
January 1995, Biological signals,
W J Wang, and G F Cheng, and K Yoshizaki, and B Dinger, and S Fidone
January 1995, Biological signals,
W J Wang, and G F Cheng, and K Yoshizaki, and B Dinger, and S Fidone
July 1982, Sheng li ke xue jin zhan [Progress in physiology],
Copied contents to your clipboard!