The protein phosphatase inhibitor okadaic acid induces morphological changes typical of apoptosis in mammalian cells. 1991

R Bøe, and B T Gjertsen, and O K Vintermyr, and G Houge, and M Lanotte, and S O Døskeland
Department of Anatomy, University of Bergen, Norway.

Okadaic acid, a specific and potent inhibitor of protein phosphatases 2A and 1, was tested for its effect on the morphology of a number of cell types: freshly isolated rat hepatocytes in suspension or in primary culture, the human mammary carcinoma cell line MCF-7, the human neuroblastoma cell line SK-N-SH, rat pituitary adenoma GH3 cells, and rat promyelocytic IPC-81 cells. All the cell types reacted within a few hours to okadaic acid in the concentration range 0.1 to 1 microM with profound morphological alterations. Among the changes noted were: condensation of chromatin, shedding of cell contents via surface bleb formation, redistribution and compacting of cytoplasmic organelles, formation of cytoplasmic vacuoles, and hyperconvolution of the nuclear membrane. In some cells nuclear fragmentation was noted. In addition, cells growing as monolayers rounded up and detached from the substratum. The treated cells had no swollen mitochondria and retained the ability to exclude trypan blue until the final stage of dissolution, supporting the hypothesis that the changes were apoptotic rather than necrotic. In hepatocytes the action of okadaic acid was mimicked by another phosphatase inhibitor, microcystin, and was accompanied by shrinkage of the cell volume, as judged by Coulter counter analysis. The action of phosphatase inhibitor was not abolished by protein synthesis inhibitors, Ca(2+)-depleted medium, or phorbol ester. Although hepatocyte DNA replication was very sensitive to inhibition by okadaic acid, DNA fragmentation was less pronounced in response to okadaic acid than other agents inducing the morphological appearance of apoptosis.

UI MeSH Term Description Entries
D008387 Marine Toxins Toxic or poisonous substances elaborated by marine flora or fauna. They include also specific, characterized poisons or toxins for which there is no more specific heading, like those from poisonous FISHES. Marine Biotoxins,Phycotoxins
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D008857 Microscopy, Interference The science and application of a double-beam transmission interference microscope in which the illuminating light beam is split into two paths. One beam passes through the specimen while the other beam reflects off a reference mirror before joining and interfering with the other. The observed optical path difference between the two beams can be measured and used to discriminate minute differences in thickness and refraction of non-stained transparent specimens, such as living cells in culture. Interferometry, Microscopic,Microinterferometry,Microscopy, Differential Interference Contrast,Microscopy, Interference Reflection,Microscopy, Nomarski Interference Contrast,Interference Microscopy,Interference Reflection Microscopy,Microscopic Interferometry,Reflection Microscopy, Interference
D010456 Peptides, Cyclic Peptides whose amino acid residues are linked together forming a circular chain. Some of them are ANTI-INFECTIVE AGENTS; some are biosynthesized non-ribosomally (PEPTIDE BIOSYNTHESIS, NON-RIBOSOMAL). Circular Peptide,Cyclic Peptide,Cyclic Peptides,Cyclopeptide,Orbitide,Circular Peptides,Cyclopeptides,Orbitides,Peptide, Circular,Peptide, Cyclic,Peptides, Circular
D010703 Phorbol Esters Tumor-promoting compounds obtained from CROTON OIL (Croton tiglium). Some of these are used in cell biological experiments as activators of protein kinase C. Phorbol Diester,Phorbol Ester,Phorbol Diesters,Diester, Phorbol,Diesters, Phorbol,Ester, Phorbol,Esters, Phorbol
D010749 Phosphoprotein Phosphatases A group of enzymes removing the SERINE- or THREONINE-bound phosphate groups from a wide range of phosphoproteins, including a number of enzymes which have been phosphorylated under the action of a kinase. (Enzyme Nomenclature, 1992) Phosphoprotein Phosphatase,Phosphoprotein Phosphohydrolase,Protein Phosphatase,Protein Phosphatases,Casein Phosphatase,Ecto-Phosphoprotein Phosphatase,Nuclear Protein Phosphatase,Phosphohistone Phosphatase,Phosphoprotein Phosphatase-2C,Phosphoseryl-Protein Phosphatase,Protein Phosphatase C,Protein Phosphatase C-I,Protein Phosphatase C-II,Protein Phosphatase H-II,Protein-Serine-Threonine Phosphatase,Protein-Threonine Phosphatase,Serine-Threonine Phosphatase,Threonine Phosphatase,Ecto Phosphoprotein Phosphatase,Phosphatase C, Protein,Phosphatase C-I, Protein,Phosphatase C-II, Protein,Phosphatase H-II, Protein,Phosphatase, Casein,Phosphatase, Ecto-Phosphoprotein,Phosphatase, Nuclear Protein,Phosphatase, Phosphohistone,Phosphatase, Phosphoprotein,Phosphatase, Phosphoseryl-Protein,Phosphatase, Protein,Phosphatase, Protein-Serine-Threonine,Phosphatase, Protein-Threonine,Phosphatase, Serine-Threonine,Phosphatase, Threonine,Phosphatase-2C, Phosphoprotein,Phosphatases, Phosphoprotein,Phosphatases, Protein,Phosphohydrolase, Phosphoprotein,Phosphoprotein Phosphatase 2C,Phosphoseryl Protein Phosphatase,Protein Phosphatase C I,Protein Phosphatase C II,Protein Phosphatase H II,Protein Phosphatase, Nuclear,Protein Serine Threonine Phosphatase,Protein Threonine Phosphatase,Serine Threonine Phosphatase
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002448 Cell Adhesion Adherence of cells to surfaces or to other cells. Adhesion, Cell,Adhesions, Cell,Cell Adhesions
D002470 Cell Survival The span of viability of a cell characterized by the capacity to perform certain functions such as metabolism, growth, reproduction, some form of responsiveness, and adaptability. Cell Viability,Cell Viabilities,Survival, Cell,Viabilities, Cell,Viability, Cell
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell

Related Publications

R Bøe, and B T Gjertsen, and O K Vintermyr, and G Houge, and M Lanotte, and S O Døskeland
January 1995, Journal of cancer research and clinical oncology,
R Bøe, and B T Gjertsen, and O K Vintermyr, and G Houge, and M Lanotte, and S O Døskeland
May 1993, Biochemical and biophysical research communications,
R Bøe, and B T Gjertsen, and O K Vintermyr, and G Houge, and M Lanotte, and S O Døskeland
November 2002, Current medicinal chemistry,
R Bøe, and B T Gjertsen, and O K Vintermyr, and G Houge, and M Lanotte, and S O Døskeland
June 2011, Journal of environmental monitoring : JEM,
R Bøe, and B T Gjertsen, and O K Vintermyr, and G Houge, and M Lanotte, and S O Døskeland
July 1999, Cell death and differentiation,
R Bøe, and B T Gjertsen, and O K Vintermyr, and G Houge, and M Lanotte, and S O Døskeland
October 1998, Experimental neurology,
R Bøe, and B T Gjertsen, and O K Vintermyr, and G Houge, and M Lanotte, and S O Døskeland
October 1993, Mutation research,
R Bøe, and B T Gjertsen, and O K Vintermyr, and G Houge, and M Lanotte, and S O Døskeland
July 2003, Biochimie,
R Bøe, and B T Gjertsen, and O K Vintermyr, and G Houge, and M Lanotte, and S O Døskeland
December 1994, Journal of cell science,
R Bøe, and B T Gjertsen, and O K Vintermyr, and G Houge, and M Lanotte, and S O Døskeland
March 1989, FEBS letters,
Copied contents to your clipboard!