Binding of laminin alpha1-chain LG4-5 domain to alpha-dystroglycan causes tyrosine phosphorylation of syntrophin to initiate Rac1 signaling. 2006

Yan Wen Zhou, and Donald B Thomason, and Donald Gullberg, and Harry W Jarrett
Department of Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee 38163, USA.

Previously, a signaling pathway was described [Oak, Zhou, and Jarrett (2003) J. Biol. Chem. 278, 39287-39295] that links matrix laminin binding on the outside of the sarcolemma to Grb2 binding to syntrophin on the inside surface of the sarcolemma and by way of Grb2-Sos1-Rac1-PAK1-JNK ultimately results in the phosphorylation of c-jun on Ser(65). How this signaling is initiated was investigated. Grb2-binding to syntrophin is increased by the addition of either laminin-1 or the isolated laminin alpha1 globular domain modules LG4-5, a protein referred to as E3. This identifies the LG4-5 sequences as the region of laminin responsible for signaling. Since laminin alpha1 LG4 is known to bind alpha-dystroglycan, this directly implicates alpha-dystroglycan as the laminin-signaling receptor. E3 or laminin-1 increase Grb2-binding and Rac1 activation. In the presence of E3 or laminin-1, syntrophin is phosphorylated on a tyrosine residue, and this increases and alters Grb2 binding. The alpha-dystroglycan antibody, IIH6, which blocks binding of laminins to alpha-dystroglycan, blocks both the laminin-induced Sos1/2 recruitment and syntrophin phosphorylation, showing that it is alpha-dystroglycan binding the LG4-5 region of laminin that is responsible. The C-terminal SH3 domain of Grb2 (C-SH3) binds only to nonphosphorylated syntrophin, and phosphorylation causes the Grb2 SH2 domain to bind and prevents SH3 binding. Syntrophin, tyrosine phosphate, beta-dystroglycan, and Rac1 all co-localize to the sarcolemma of rat muscle sections. A model for how this phosphorylation may initiate downstream events in laminin signaling is presented.

UI MeSH Term Description Entries
D007797 Laminin Large, noncollagenous glycoprotein with antigenic properties. It is localized in the basement membrane lamina lucida and functions to bind epithelial cells to the basement membrane. Evidence suggests that the protein plays a role in tumor invasion. Merosin,Glycoprotein GP-2,Laminin M,Laminin M Chain,Chain, Laminin M,Glycoprotein GP 2,M Chain, Laminin
D010766 Phosphorylation The introduction of a phosphoryl group into a compound through the formation of an ester bond between the compound and a phosphorus moiety. Phosphorylations
D011817 Rabbits A burrowing plant-eating mammal with hind limbs that are longer than its fore limbs. It belongs to the family Leporidae of the order Lagomorpha, and in contrast to hares, possesses 22 instead of 24 pairs of chromosomes. Belgian Hare,New Zealand Rabbit,New Zealand Rabbits,New Zealand White Rabbit,Rabbit,Rabbit, Domestic,Chinchilla Rabbits,NZW Rabbits,New Zealand White Rabbits,Oryctolagus cuniculus,Chinchilla Rabbit,Domestic Rabbit,Domestic Rabbits,Hare, Belgian,NZW Rabbit,Rabbit, Chinchilla,Rabbit, NZW,Rabbit, New Zealand,Rabbits, Chinchilla,Rabbits, Domestic,Rabbits, NZW,Rabbits, New Zealand,Zealand Rabbit, New,Zealand Rabbits, New,cuniculus, Oryctolagus
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012508 Sarcolemma The excitable plasma membrane of a muscle cell. (Glick, Glossary of Biochemistry and Molecular Biology, 1990) Sarcolemmas
D014443 Tyrosine A non-essential amino acid. In animals it is synthesized from PHENYLALANINE. It is also the precursor of EPINEPHRINE; THYROID HORMONES; and melanin. L-Tyrosine,Tyrosine, L-isomer,para-Tyrosine,L Tyrosine,Tyrosine, L isomer,para Tyrosine
D015398 Signal Transduction The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway. Cell Signaling,Receptor-Mediated Signal Transduction,Signal Pathways,Receptor Mediated Signal Transduction,Signal Transduction Pathways,Signal Transduction Systems,Pathway, Signal,Pathway, Signal Transduction,Pathways, Signal,Pathways, Signal Transduction,Receptor-Mediated Signal Transductions,Signal Pathway,Signal Transduction Pathway,Signal Transduction System,Signal Transduction, Receptor-Mediated,Signal Transductions,Signal Transductions, Receptor-Mediated,System, Signal Transduction,Systems, Signal Transduction,Transduction, Signal,Transductions, Signal
D017434 Protein Structure, Tertiary The level of protein structure in which combinations of secondary protein structures (ALPHA HELICES; BETA SHEETS; loop regions, and AMINO ACID MOTIFS) pack together to form folded shapes. Disulfide bridges between cysteines in two different parts of the polypeptide chain along with other interactions between the chains play a role in the formation and stabilization of tertiary structure. Tertiary Protein Structure,Protein Structures, Tertiary,Tertiary Protein Structures

Related Publications

Yan Wen Zhou, and Donald B Thomason, and Donald Gullberg, and Harry W Jarrett
March 2010, Matrix biology : journal of the International Society for Matrix Biology,
Yan Wen Zhou, and Donald B Thomason, and Donald Gullberg, and Harry W Jarrett
March 1999, Journal of molecular biology,
Yan Wen Zhou, and Donald B Thomason, and Donald Gullberg, and Harry W Jarrett
January 2010, Journal of cellular physiology,
Yan Wen Zhou, and Donald B Thomason, and Donald Gullberg, and Harry W Jarrett
September 2003, Journal of molecular biology,
Yan Wen Zhou, and Donald B Thomason, and Donald Gullberg, and Harry W Jarrett
January 2010, Science (New York, N.Y.),
Yan Wen Zhou, and Donald B Thomason, and Donald Gullberg, and Harry W Jarrett
November 2003, Biochemistry,
Yan Wen Zhou, and Donald B Thomason, and Donald Gullberg, and Harry W Jarrett
April 2003, The Biochemical journal,
Yan Wen Zhou, and Donald B Thomason, and Donald Gullberg, and Harry W Jarrett
May 2000, The Journal of biological chemistry,
Yan Wen Zhou, and Donald B Thomason, and Donald Gullberg, and Harry W Jarrett
March 2006, FEBS letters,
Yan Wen Zhou, and Donald B Thomason, and Donald Gullberg, and Harry W Jarrett
October 2009, Cell and tissue research,
Copied contents to your clipboard!