Descending projections to the dorsal and ventral divisions of the cochlear nucleus in guinea pig. 1991

S E Shore, and R H Helfert, and S C Bledsoe, and R A Altschuler, and D A Godfrey
Department of Otolaryngology, Medical College of Ohio, Toledo 43699.

The origins of extrinsic projections to the guinea pig dorsal and ventral cochlear nuclei were identified by examining the retrograde transport of horseradish peroxidase conjugated to wheatgerm agglutinin following its injection into each of these divisions. Major projections originated in periolivary regions of the superior olivary complex, the contralateral cochlear nucleus and the inferior colliculus. There was no contribution from the nuclei of the lateral lemniscus to these pathways. The heaviest projection from the periolivary regions to both divisions of the cochlear nucleus arose bilaterally in the ventral nucleus of the trapezoid body. The ipsilateral lateral nucleus of the trapezoid body also projected heavily to dorsal and ventral cochlear nucleus. In addition, the ventral cochlear nucleus received a substantial projection from the dorsal aspect of the ipsilateral dorsomedial periolivary nucleus. Projections originating bilaterally in the central nucleus of the inferior colliculus terminated in the deep layers of dorsal cochlear nucleus. These projections appear to be more strongly ipsilateral and specific than those reported in the cat.

UI MeSH Term Description Entries
D007245 Inferior Colliculi The posterior pair of the quadrigeminal bodies which contain centers for auditory function. Colliculus, Inferior,Brachial Nucleus of the Inferior Colliculus,Caudal Colliculus,Colliculus Inferior,Inferior Colliculus,Posterior Colliculus,Colliculi, Inferior,Colliculus Inferiors,Colliculus, Caudal,Colliculus, Posterior,Inferior, Colliculus,Inferiors, Colliculus
D009435 Synaptic Transmission The communication from a NEURON to a target (neuron, muscle, or secretory cell) across a SYNAPSE. In chemical synaptic transmission, the presynaptic neuron releases a NEUROTRANSMITTER that diffuses across the synaptic cleft and binds to specific synaptic receptors, activating them. The activated receptors modulate specific ion channels and/or second-messenger systems in the postsynaptic cell. In electrical synaptic transmission, electrical signals are communicated as an ionic current flow across ELECTRICAL SYNAPSES. Neural Transmission,Neurotransmission,Transmission, Neural,Transmission, Synaptic
D009847 Olivary Nucleus A brainstem nuclear complex. in the hindbrain, also referred to as the olivary body. The olivary nuclear complex is a part of the MEDULLA OBLONGATA and the PONTINE TEGMENTUM. It is involved with motor control and is a major source of sensory input to the CEREBELLUM. Basal Nucleus, Olivary,Nucleus Basalis, Olivary,Olivary Body,Olivary Complex,Olivary Nuclei,Complex, Olivary,Nucleus, Olivary,Nucleus, Olivary Basal,Olivary Basal Nucleus,Olivary Bodies
D001933 Brain Stem The part of the brain that connects the CEREBRAL HEMISPHERES with the SPINAL CORD. It consists of the MESENCEPHALON; PONS; and MEDULLA OBLONGATA. Brainstem,Truncus Cerebri,Brain Stems,Brainstems,Cerebri, Truncus,Cerebrus, Truncus,Truncus Cerebrus
D003056 Cochlear Nerve The cochlear part of the 8th cranial nerve (VESTIBULOCOCHLEAR NERVE). The cochlear nerve fibers originate from neurons of the SPIRAL GANGLION and project peripherally to cochlear hair cells and centrally to the cochlear nuclei (COCHLEAR NUCLEUS) of the BRAIN STEM. They mediate the sense of hearing. Acoustic Nerve,Auditory Nerve,Acoustic Nerves,Auditory Nerves,Cochlear Nerves,Nerve, Acoustic,Nerve, Auditory,Nerve, Cochlear,Nerves, Acoustic,Nerves, Auditory,Nerves, Cochlear
D004525 Efferent Pathways Nerve structures through which impulses are conducted from a nerve center toward a peripheral site. Such impulses are conducted via efferent neurons (NEURONS, EFFERENT), such as MOTOR NEURONS, autonomic neurons, and hypophyseal neurons. Motor Pathways,Efferent Pathway,Pathway, Efferent,Pathways, Efferent
D006168 Guinea Pigs A common name used for the genus Cavia. The most common species is Cavia porcellus which is the domesticated guinea pig used for pets and biomedical research. Cavia,Cavia porcellus,Guinea Pig,Pig, Guinea,Pigs, Guinea
D006735 Horseradish Peroxidase An enzyme isolated from horseradish which is able to act as an antigen. It is frequently used as a histochemical tracer for light and electron microscopy. Its antigenicity has permitted its use as a combined antigen and marker in experimental immunology. Alpha-Peroxidase,Ferrihorseradish Peroxidase,Horseradish Peroxidase II,Horseradish Peroxidase III,Alpha Peroxidase,II, Horseradish Peroxidase,III, Horseradish Peroxidase,Peroxidase II, Horseradish,Peroxidase III, Horseradish,Peroxidase, Ferrihorseradish,Peroxidase, Horseradish
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001306 Auditory Pathways NEURAL PATHWAYS and connections within the CENTRAL NERVOUS SYSTEM, beginning at the hair cells of the ORGAN OF CORTI, continuing along the eighth cranial nerve, and terminating at the AUDITORY CORTEX. Auditory Pathway,Pathway, Auditory,Pathways, Auditory

Related Publications

S E Shore, and R H Helfert, and S C Bledsoe, and R A Altschuler, and D A Godfrey
August 1997, The Journal of comparative neurology,
S E Shore, and R H Helfert, and S C Bledsoe, and R A Altschuler, and D A Godfrey
February 1989, The Journal of comparative neurology,
S E Shore, and R H Helfert, and S C Bledsoe, and R A Altschuler, and D A Godfrey
April 1999, Journal of submicroscopic cytology and pathology,
S E Shore, and R H Helfert, and S C Bledsoe, and R A Altschuler, and D A Godfrey
January 1985, Experimental brain research,
S E Shore, and R H Helfert, and S C Bledsoe, and R A Altschuler, and D A Godfrey
December 1996, Hearing research,
S E Shore, and R H Helfert, and S C Bledsoe, and R A Altschuler, and D A Godfrey
March 2017, The Journal of comparative neurology,
S E Shore, and R H Helfert, and S C Bledsoe, and R A Altschuler, and D A Godfrey
January 2012, The Journal of comparative neurology,
S E Shore, and R H Helfert, and S C Bledsoe, and R A Altschuler, and D A Godfrey
October 1988, The Journal of comparative neurology,
S E Shore, and R H Helfert, and S C Bledsoe, and R A Altschuler, and D A Godfrey
September 1987, Brain research,
S E Shore, and R H Helfert, and S C Bledsoe, and R A Altschuler, and D A Godfrey
June 1973, Experimental brain research,
Copied contents to your clipboard!