High fidelity developmental excision of Tec1 transposons and internal eliminated sequences in Euplotes crassus. 1991

S L Tausta, and L R Turner, and L K Buckley, and L A Klobutcher
Department of Biochemistry, University of Connecticut Health Center, Farmington 06030.

Following the sexual phase of its life cycle, the hypotrichous ciliate Euplotes crassus transforms a copy of its chromosomal micronucleus into a transcriptionally active macronucleus containing short, linear, gene-sized DNA molecules. Tens of thousands of DNA breakage and joining, or splicing, events occur during macronuclear development. The DNA removed by such events includes transposon-like elements, referred to as Tec1 elements, as well as segments of unique sequence DNA, termed internal eliminated sequences (IESs). Both types of elements are bounded by short direct repeats. In the current study, a polymerase chain reaction (PCR) and DNA sequencing strategy has been used to examine the fidelity of excision of two Tec1 elements and three IESs. In all cases, the vast majority of excision events were found to be precise, with one copy of the terminal direct repeats retained at the empty site in the macronuclear DNA molecule. These results, in combination with previous studies that have characterized the excised DNA elements, indicate that the two products of excision (the free element and the macronuclear DNA molecule) share DNA sequences. This suggests that excision events are initiated by staggered cuts in the chromosomal DNA.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D002872 Chromosome Deletion Actual loss of portion of a chromosome. Monosomy, Partial,Partial Monosomy,Deletion, Chromosome,Deletions, Chromosome,Monosomies, Partial,Partial Monosomies
D004251 DNA Transposable Elements Discrete segments of DNA which can excise and reintegrate to another site in the genome. Most are inactive, i.e., have not been found to exist outside the integrated state. DNA transposable elements include bacterial IS (insertion sequence) elements, Tn elements, the maize controlling elements Ac and Ds, Drosophila P, gypsy, and pogo elements, the human Tigger elements and the Tc and mariner elements which are found throughout the animal kingdom. DNA Insertion Elements,DNA Transposons,IS Elements,Insertion Sequence Elements,Tn Elements,Transposable Elements,Elements, Insertion Sequence,Sequence Elements, Insertion,DNA Insertion Element,DNA Transposable Element,DNA Transposon,Element, DNA Insertion,Element, DNA Transposable,Element, IS,Element, Insertion Sequence,Element, Tn,Element, Transposable,Elements, DNA Insertion,Elements, DNA Transposable,Elements, IS,Elements, Tn,Elements, Transposable,IS Element,Insertion Element, DNA,Insertion Elements, DNA,Insertion Sequence Element,Sequence Element, Insertion,Tn Element,Transposable Element,Transposable Element, DNA,Transposable Elements, DNA,Transposon, DNA,Transposons, DNA
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D015183 Restriction Mapping Use of restriction endonucleases to analyze and generate a physical map of genomes, genes, or other segments of DNA. Endonuclease Mapping, Restriction,Enzyme Mapping, Restriction,Site Mapping, Restriction,Analysis, Restriction Enzyme,Enzyme Analysis, Restriction,Restriction Enzyme Analysis,Analyses, Restriction Enzyme,Endonuclease Mappings, Restriction,Enzyme Analyses, Restriction,Enzyme Mappings, Restriction,Mapping, Restriction,Mapping, Restriction Endonuclease,Mapping, Restriction Enzyme,Mapping, Restriction Site,Mappings, Restriction,Mappings, Restriction Endonuclease,Mappings, Restriction Enzyme,Mappings, Restriction Site,Restriction Endonuclease Mapping,Restriction Endonuclease Mappings,Restriction Enzyme Analyses,Restriction Enzyme Mapping,Restriction Enzyme Mappings,Restriction Mappings,Restriction Site Mapping,Restriction Site Mappings,Site Mappings, Restriction
D016054 DNA, Protozoan Deoxyribonucleic acid that makes up the genetic material of protozoa. Protozoan DNA
D016133 Polymerase Chain Reaction In vitro method for producing large amounts of specific DNA or RNA fragments of defined length and sequence from small amounts of short oligonucleotide flanking sequences (primers). The essential steps include thermal denaturation of the double-stranded target molecules, annealing of the primers to their complementary sequences, and extension of the annealed primers by enzymatic synthesis with DNA polymerase. The reaction is efficient, specific, and extremely sensitive. Uses for the reaction include disease diagnosis, detection of difficult-to-isolate pathogens, mutation analysis, genetic testing, DNA sequencing, and analyzing evolutionary relationships. Anchored PCR,Inverse PCR,Nested PCR,PCR,Anchored Polymerase Chain Reaction,Inverse Polymerase Chain Reaction,Nested Polymerase Chain Reaction,PCR, Anchored,PCR, Inverse,PCR, Nested,Polymerase Chain Reactions,Reaction, Polymerase Chain,Reactions, Polymerase Chain
D016798 Ciliophora A phylum of EUKARYOTES characterized by the presence of cilia at some time during the life cycle. It comprises three classes: KINETOFRAGMINOPHOREA; OLIGOHYMENOPHOREA; and POLYMENOPHOREA. Ciliata,Ciliatas,Ciliophoras

Related Publications

S L Tausta, and L R Turner, and L K Buckley, and L A Klobutcher
February 1990, Nucleic acids research,
S L Tausta, and L R Turner, and L K Buckley, and L A Klobutcher
February 2003, Eukaryotic cell,
S L Tausta, and L R Turner, and L K Buckley, and L A Klobutcher
December 1998, Molecular and cellular biology,
S L Tausta, and L R Turner, and L K Buckley, and L A Klobutcher
October 1993, Gene,
S L Tausta, and L R Turner, and L K Buckley, and L A Klobutcher
January 2002, Nucleic acids research,
S L Tausta, and L R Turner, and L K Buckley, and L A Klobutcher
March 2000, Molecular and cellular biology,
S L Tausta, and L R Turner, and L K Buckley, and L A Klobutcher
January 1996, The Journal of eukaryotic microbiology,
S L Tausta, and L R Turner, and L K Buckley, and L A Klobutcher
March 1995, Proceedings of the National Academy of Sciences of the United States of America,
S L Tausta, and L R Turner, and L K Buckley, and L A Klobutcher
September 1991, Molecular and cellular biology,
Copied contents to your clipboard!