Affinity purification of eukaryotic 48S initiation complexes. 2006

Nicolas Locker, and Laura E Easton, and Peter J Lukavsky
MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, United Kingdom.

In vitro assembly of translation initiation complexes from higher eukaryotes requires purification of ribosomal subunits, eukaryotic initiation factors, and initiator tRNA from natural sources, and therefore yields only limited material for functional and structural studies. Here we describe a robust, affinity chromatography-based purification of eukaryotic 48S initiation complexes from rabbit reticulocyte lysate (RRL), which significantly reduces the number of individual purification steps. Hybrid RNA molecules, consisting of either a canonical 5' UTR or an internal ribosome entry site (IRES) RNA followed by a short open reading frame and a streptomycin aptamer sequence, are incubated in RRL to form 48S complexes. The assembly reaction is then applied to a dihydrostreptomycin-sepharose column; bound complexes are washed and specifically eluted upon addition of streptomycin. The eluted fractions are further purified by centrifugation through a sucrose density gradient to yield pure 48S particles. Using this purification scheme, properly assembled IRES-mediated as well as canonical 48S complexes were purified in milligram quantities.

UI MeSH Term Description Entries
D011817 Rabbits A burrowing plant-eating mammal with hind limbs that are longer than its fore limbs. It belongs to the family Leporidae of the order Lagomorpha, and in contrast to hares, possesses 22 instead of 24 pairs of chromosomes. Belgian Hare,New Zealand Rabbit,New Zealand Rabbits,New Zealand White Rabbit,Rabbit,Rabbit, Domestic,Chinchilla Rabbits,NZW Rabbits,New Zealand White Rabbits,Oryctolagus cuniculus,Chinchilla Rabbit,Domestic Rabbit,Domestic Rabbits,Hare, Belgian,NZW Rabbit,Rabbit, Chinchilla,Rabbit, NZW,Rabbit, New Zealand,Rabbits, Chinchilla,Rabbits, Domestic,Rabbits, NZW,Rabbits, New Zealand,Zealand Rabbit, New,Zealand Rabbits, New,cuniculus, Oryctolagus
D002846 Chromatography, Affinity A chromatographic technique that utilizes the ability of biological molecules, often ANTIBODIES, to bind to certain ligands specifically and reversibly. It is used in protein biochemistry. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Chromatography, Bioaffinity,Immunochromatography,Affinity Chromatography,Bioaffinity Chromatography
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D015152 Blotting, Northern Detection of RNA that has been electrophoretically separated and immobilized by blotting on nitrocellulose or other type of paper or nylon membrane followed by hybridization with labeled NUCLEIC ACID PROBES. Northern Blotting,Blot, Northern,Northern Blot,Blots, Northern,Blottings, Northern,Northern Blots,Northern Blottings
D015153 Blotting, Western Identification of proteins or peptides that have been electrophoretically separated by blot transferring from the electrophoresis gel to strips of nitrocellulose paper, followed by labeling with antibody probes. Immunoblotting, Western,Western Blotting,Western Immunoblotting,Blot, Western,Immunoblot, Western,Western Blot,Western Immunoblot,Blots, Western,Blottings, Western,Immunoblots, Western,Immunoblottings, Western,Western Blots,Western Blottings,Western Immunoblots,Western Immunoblottings
D017931 DNA Primers Short sequences (generally about 10 base pairs) of DNA that are complementary to sequences of messenger RNA and allow reverse transcriptases to start copying the adjacent sequences of mRNA. Primers are used extensively in genetic and molecular biology techniques. DNA Primer,Oligodeoxyribonucleotide Primer,Oligodeoxyribonucleotide Primers,Oligonucleotide Primer,Oligonucleotide Primers,Primer, DNA,Primer, Oligodeoxyribonucleotide,Primer, Oligonucleotide,Primers, DNA,Primers, Oligodeoxyribonucleotide,Primers, Oligonucleotide
D020121 5' Untranslated Regions The sequence at the 5' end of the messenger RNA that does not code for product. This sequence contains the ribosome binding site and other transcription and translation regulating sequences. 5'UTR,Leader Sequences, mRNA,Leader mRNA Sequences,mRNA Leader Sequences,5' UTR,5' UTRs,5' Untranslated Region,5'UTRs,Leader Sequence, mRNA,Leader mRNA Sequence,Region, 5' Untranslated,Regions, 5' Untranslated,Sequence, Leader mRNA,Sequence, mRNA Leader,Sequences, Leader mRNA,Sequences, mRNA Leader,UTR, 5',UTRs, 5',Untranslated Region, 5',Untranslated Regions, 5',mRNA Leader Sequence,mRNA Sequence, Leader,mRNA Sequences, Leader
D039642 Eukaryotic Initiation Factors Peptide initiation factors from eukaryotic organisms. Over twelve factors are involved in PEPTIDE CHAIN INITIATION, TRANSLATIONAL in eukaryotic cells. Many of these factors play a role in controlling the rate of MRNA TRANSLATION. Peptide Initiation Factors, Eukaryotic,Translation Initiation Factors, Eukaryotic,Eukaryotic Peptide Initiation Factors,Initiation Factors, Eukaryotic

Related Publications

Nicolas Locker, and Laura E Easton, and Peter J Lukavsky
January 2007, Methods in enzymology,
Nicolas Locker, and Laura E Easton, and Peter J Lukavsky
January 2017, Journal of visualized experiments : JoVE,
Nicolas Locker, and Laura E Easton, and Peter J Lukavsky
January 1979, Methods in enzymology,
Nicolas Locker, and Laura E Easton, and Peter J Lukavsky
January 2003, FEBS letters,
Nicolas Locker, and Laura E Easton, and Peter J Lukavsky
May 2011, Cold Spring Harbor protocols,
Nicolas Locker, and Laura E Easton, and Peter J Lukavsky
January 2007, Methods in enzymology,
Nicolas Locker, and Laura E Easton, and Peter J Lukavsky
January 2007, Methods in enzymology,
Nicolas Locker, and Laura E Easton, and Peter J Lukavsky
December 2004, The Biochemical journal,
Nicolas Locker, and Laura E Easton, and Peter J Lukavsky
March 1988, Biochemistry international,
Nicolas Locker, and Laura E Easton, and Peter J Lukavsky
January 2007, Methods in enzymology,
Copied contents to your clipboard!