Halothane inhibits two components of calcium current in clonal (GH3) pituitary cells. 1991

J Herrington, and R C Stern, and A S Evers, and C J Lingle
Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri 63110.

The effect of halothane on isolated calcium (Ca2+) current of clonal (GH3) pituitary cells was investigated using standard whole-cell clamp techniques at room temperature. Halothane (0.1-5.0 mM) reversibly reduced both the low-threshold, transient [low-voltage-activated (LVA)] component and the high-threshold [high-voltage-activated (HVA)] component of Ca2+ current. Halothane had little effect on the voltage dependence of activation or inactivation of either component of Ca2+ current. Inhibition of the peak high-threshold Ca2+ current was half-maximal at about 0.8 mM halothane, with maximal inhibition (100%) occurring with 5 mM halothane. When measured at the end of a 190-msec command step, half-maximal reduction of high-threshold current occurred at less than 0.5 mM halothane. The low-threshold transient current was less sensitive to halothane, with half-maximal inhibition of peak transient current activated at -30 mV occurring at approximately 1.3 mM. The effect of halothane on the HVA current was apparently not mediated by changes in intracellular Ca2+ concentration. The ability of halothane to inhibit Ca2+ current was unaffected by either the inclusion of the rapid Ca2+ buffer 1,2-bis(2-aminophenoxy)ethane N,N,N',N'-tetraacetic acid (BAPTA) in the recording pipette or exposure of the cell to 10 mM caffeine. To assess the selectivity of the effect of halothane, the actions of halothane on two components of voltage-activated potassium (K+) current observed in the absence of extracellular Ca2+ and on voltage-dependent sodium (Na+) current were also examined. Halothane had no effect on the voltage-dependent, inactivating K+ current of GH3 cells at concentrations up to 1.2 mM. In contrast, the non-inactivating K+ current, though less sensitive to halothane than either Ca2+ current, was reduced by about 40% by 1.2 mM halothane at +20 mV. Peak Na+ current was also blocked by halothane, but 50% block required around 2.6 mM halothane with little effect at 1.6 mM. Reduction of Na+ current was associated with a substantial negative shift in the steady-state inactivation curve. Although the results indicate that a number of voltage-dependent ionic currents are sensitive to halothane, both components of Ca2+ current exhibit a greater sensitivity to halothane than any of three other voltage-dependent currents in GH3 cells. These results show that GH3 cell Ca2+ currents are selectively inhibited by clinically appropriate concentrations of halothane and that the reduction of Ca2+ current can account for the inhibition by halothane of TRH- or KCl-induced prolactin secretion in GH3 cells.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D010902 Pituitary Gland A small, unpaired gland situated in the SELLA TURCICA. It is connected to the HYPOTHALAMUS by a short stalk which is called the INFUNDIBULUM. Hypophysis,Hypothalamus, Infundibular,Infundibular Stalk,Infundibular Stem,Infundibulum (Hypophysis),Infundibulum, Hypophyseal,Pituitary Stalk,Hypophyseal Infundibulum,Hypophyseal Stalk,Hypophysis Cerebri,Infundibulum,Cerebri, Hypophysis,Cerebrus, Hypophysis,Gland, Pituitary,Glands, Pituitary,Hypophyseal Stalks,Hypophyses,Hypophysis Cerebrus,Infundibular Hypothalamus,Infundibular Stalks,Infundibulums,Pituitary Glands,Pituitary Stalks,Stalk, Hypophyseal,Stalk, Infundibular,Stalks, Hypophyseal,Stalks, Infundibular
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D002999 Clone Cells A group of genetically identical cells all descended from a single common ancestral cell by mitosis in eukaryotes or by binary fission in prokaryotes. Clone cells also include populations of recombinant DNA molecules all carrying the same inserted sequence. (From King & Stansfield, Dictionary of Genetics, 4th ed) Clones,Cell, Clone,Cells, Clone,Clone,Clone Cell
D004305 Dose-Response Relationship, Drug The relationship between the dose of an administered drug and the response of the organism to the drug. Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response
D004553 Electric Conductivity The ability of a substrate to allow the passage of ELECTRONS. Electrical Conductivity,Conductivity, Electric,Conductivity, Electrical
D006221 Halothane A nonflammable, halogenated, hydrocarbon anesthetic that provides relatively rapid induction with little or no excitement. Analgesia may not be adequate. NITROUS OXIDE is often given concomitantly. Because halothane may not produce sufficient muscle relaxation, supplemental neuromuscular blocking agents may be required. (From AMA Drug Evaluations Annual, 1994, p178) 1,1,1-Trifluoro-2-Chloro-2-Bromoethane,Fluothane,Ftorotan,Narcotan
D015220 Calcium Channels Voltage-dependent cell membrane glycoproteins selectively permeable to calcium ions. They are categorized as L-, T-, N-, P-, Q-, and R-types based on the activation and inactivation kinetics, ion specificity, and sensitivity to drugs and toxins. The L- and T-types are present throughout the cardiovascular and central nervous systems and the N-, P-, Q-, & R-types are located in neuronal tissue. Ion Channels, Calcium,Receptors, Calcium Channel Blocker,Voltage-Dependent Calcium Channel,Calcium Channel,Calcium Channel Antagonist Receptor,Calcium Channel Antagonist Receptors,Calcium Channel Blocker Receptor,Calcium Channel Blocker Receptors,Ion Channel, Calcium,Receptors, Calcium Channel Antagonist,VDCC,Voltage-Dependent Calcium Channels,Calcium Channel, Voltage-Dependent,Calcium Channels, Voltage-Dependent,Calcium Ion Channel,Calcium Ion Channels,Channel, Voltage-Dependent Calcium,Channels, Voltage-Dependent Calcium,Voltage Dependent Calcium Channel,Voltage Dependent Calcium Channels
D015221 Potassium Channels Cell membrane glycoproteins that are selectively permeable to potassium ions. At least eight major groups of K channels exist and they are made up of dozens of different subunits. Ion Channels, Potassium,Ion Channel, Potassium,Potassium Channel,Potassium Ion Channels,Channel, Potassium,Channel, Potassium Ion,Channels, Potassium,Channels, Potassium Ion,Potassium Ion Channel

Related Publications

J Herrington, and R C Stern, and A S Evers, and C J Lingle
January 1991, Annals of the New York Academy of Sciences,
J Herrington, and R C Stern, and A S Evers, and C J Lingle
January 1991, Annals of the New York Academy of Sciences,
J Herrington, and R C Stern, and A S Evers, and C J Lingle
October 1988, The Journal of pharmacology and experimental therapeutics,
J Herrington, and R C Stern, and A S Evers, and C J Lingle
November 1987, Pflugers Archiv : European journal of physiology,
J Herrington, and R C Stern, and A S Evers, and C J Lingle
October 1987, Pflugers Archiv : European journal of physiology,
J Herrington, and R C Stern, and A S Evers, and C J Lingle
January 1994, Pflugers Archiv : European journal of physiology,
J Herrington, and R C Stern, and A S Evers, and C J Lingle
June 1994, Anesthesiology,
J Herrington, and R C Stern, and A S Evers, and C J Lingle
July 2001, Pflugers Archiv : European journal of physiology,
J Herrington, and R C Stern, and A S Evers, and C J Lingle
April 1993, Endocrinology,
J Herrington, and R C Stern, and A S Evers, and C J Lingle
July 1992, Journal of neurophysiology,
Copied contents to your clipboard!