Genes encoding receptors for insulin and insulin-like growth factor I are expressed in Xenopus oocytes and embryos. 1991

L Scavo, and A R Shuldiner, and J Serrano, and R Dashner, and J Roth, and F de Pablo
Diabetes Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892.

Insulin and insulin-like growth factor I (IGF-I) initiate their metabolic, growth, and differentiation effects through binding to the insulin receptor and the IGF-I receptor, two members of the tyrosine kinase family of receptors. To study the role of these peptides and receptors in early development, we used the polymerase chain reaction and embryo-derived RNA to generate partial cDNA sequences of the insulin receptor and IGF-I receptor from the amphibian Xenopus laevis. Three unique tyrosine kinase-related sequences were obtained. Two of the nucleotide sequences, XTK 1a and XTK 1b, corresponded to peptide that share 92% amino acid identity, and each is 89% identical to the human insulin receptor. The third sequence, XTK 2, corresponds to a peptide that has 92% amino acid identity with the human IGF-I receptor but only 80% identity with XTK 1a and XTK 1b. On the basis of these similarities, the pattern of conserved amino acids, and the tetraploid nature of the Xenopus genome, we suggest that XTK 1a and XTK 1b most likely represent the product of two different nonallelic insulin receptor genes, while XTK 2 may be one of the probable two Xenopus IGF-I receptor genes. By reverse transcription-polymerase chain reaction and gene-specific hybridization, expression of the three XTK sequences was detected in the oocyte, unfertilized egg, and embryos through gastrulation, neurulation, and tailbud stages. Competition binding assays with Xenopus membrane preparations demonstrated insulin receptors and IGF-I receptors in older tadpoles. IGF-I receptors were also present in oocytes, eggs, and gastrula embryos. By contrast, insulin binding was present but atypical in oocytes and was barely detected in eggs and gastrula embryos. The expression of receptors for insulin and IGF-I in early Xenopus embryos and their apparent distinct developmental regulation suggest that these molecules and their ligands may be important in early Xenopus development.

UI MeSH Term Description Entries
D007334 Insulin-Like Growth Factor I A well-characterized basic peptide believed to be secreted by the liver and to circulate in the blood. It has growth-regulating, insulin-like, and mitogenic activities. This growth factor has a major, but not absolute, dependence on GROWTH HORMONE. It is believed to be mainly active in adults in contrast to INSULIN-LIKE GROWTH FACTOR II, which is a major fetal growth factor. IGF-I,Somatomedin C,IGF-1,IGF-I-SmC,Insulin Like Growth Factor I,Insulin-Like Somatomedin Peptide I,Insulin Like Somatomedin Peptide I
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009865 Oocytes Female germ cells derived from OOGONIA and termed OOCYTES when they enter MEIOSIS. The primary oocytes begin meiosis but are arrested at the diplotene state until OVULATION at PUBERTY to give rise to haploid secondary oocytes or ova (OVUM). Ovocytes,Oocyte,Ovocyte
D011505 Protein-Tyrosine Kinases Protein kinases that catalyze the PHOSPHORYLATION of TYROSINE residues in proteins with ATP or other nucleotides as phosphate donors. Tyrosine Protein Kinase,Tyrosine-Specific Protein Kinase,Protein-Tyrosine Kinase,Tyrosine Kinase,Tyrosine Protein Kinases,Tyrosine-Specific Protein Kinases,Tyrosylprotein Kinase,Kinase, Protein-Tyrosine,Kinase, Tyrosine,Kinase, Tyrosine Protein,Kinase, Tyrosine-Specific Protein,Kinase, Tyrosylprotein,Kinases, Protein-Tyrosine,Kinases, Tyrosine Protein,Kinases, Tyrosine-Specific Protein,Protein Kinase, Tyrosine-Specific,Protein Kinases, Tyrosine,Protein Kinases, Tyrosine-Specific,Protein Tyrosine Kinase,Protein Tyrosine Kinases,Tyrosine Specific Protein Kinase,Tyrosine Specific Protein Kinases
D011956 Receptors, Cell Surface Cell surface proteins that bind signalling molecules external to the cell with high affinity and convert this extracellular event into one or more intracellular signals that alter the behavior of the target cell (From Alberts, Molecular Biology of the Cell, 2nd ed, pp693-5). Cell surface receptors, unlike enzymes, do not chemically alter their ligands. Cell Surface Receptor,Cell Surface Receptors,Hormone Receptors, Cell Surface,Receptors, Endogenous Substances,Cell Surface Hormone Receptors,Endogenous Substances Receptors,Receptor, Cell Surface,Surface Receptor, Cell
D011972 Receptor, Insulin A cell surface receptor for INSULIN. It comprises a tetramer of two alpha and two beta subunits which are derived from cleavage of a single precursor protein. The receptor contains an intrinsic TYROSINE KINASE domain that is located within the beta subunit. Activation of the receptor by INSULIN results in numerous metabolic changes including increased uptake of GLUCOSE into the liver, muscle, and ADIPOSE TISSUE. Insulin Receptor,Insulin Receptor Protein-Tyrosine Kinase,Insulin Receptor alpha Subunit,Insulin Receptor beta Subunit,Insulin Receptor alpha Chain,Insulin Receptor beta Chain,Insulin-Dependent Tyrosine Protein Kinase,Receptors, Insulin,Insulin Receptor Protein Tyrosine Kinase,Insulin Receptors
D004625 Embryo, Nonmammalian The developmental entity of a fertilized egg (ZYGOTE) in animal species other than MAMMALS. For chickens, use CHICK EMBRYO. Embryonic Structures, Nonmammalian,Embryo, Non-Mammalian,Embryonic Structures, Non-Mammalian,Nonmammalian Embryo,Nonmammalian Embryo Structures,Nonmammalian Embryonic Structures,Embryo Structure, Nonmammalian,Embryo Structures, Nonmammalian,Embryo, Non Mammalian,Embryonic Structure, Non-Mammalian,Embryonic Structure, Nonmammalian,Embryonic Structures, Non Mammalian,Embryos, Non-Mammalian,Embryos, Nonmammalian,Non-Mammalian Embryo,Non-Mammalian Embryonic Structure,Non-Mammalian Embryonic Structures,Non-Mammalian Embryos,Nonmammalian Embryo Structure,Nonmammalian Embryonic Structure,Nonmammalian Embryos,Structure, Non-Mammalian Embryonic,Structure, Nonmammalian Embryo,Structure, Nonmammalian Embryonic,Structures, Non-Mammalian Embryonic,Structures, Nonmammalian Embryo,Structures, Nonmammalian Embryonic
D005796 Genes A category of nucleic acid sequences that function as units of heredity and which code for the basic instructions for the development, reproduction, and maintenance of organisms. Cistron,Gene,Genetic Materials,Cistrons,Genetic Material,Material, Genetic,Materials, Genetic
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein

Related Publications

L Scavo, and A R Shuldiner, and J Serrano, and R Dashner, and J Roth, and F de Pablo
February 1991, The Biochemical journal,
L Scavo, and A R Shuldiner, and J Serrano, and R Dashner, and J Roth, and F de Pablo
August 1993, Annals of the New York Academy of Sciences,
L Scavo, and A R Shuldiner, and J Serrano, and R Dashner, and J Roth, and F de Pablo
April 1989, Proceedings of the National Academy of Sciences of the United States of America,
L Scavo, and A R Shuldiner, and J Serrano, and R Dashner, and J Roth, and F de Pablo
May 1993, Fertility and sterility,
L Scavo, and A R Shuldiner, and J Serrano, and R Dashner, and J Roth, and F de Pablo
October 1995, The Biochemical journal,
L Scavo, and A R Shuldiner, and J Serrano, and R Dashner, and J Roth, and F de Pablo
December 1992, Molecular and cellular endocrinology,
L Scavo, and A R Shuldiner, and J Serrano, and R Dashner, and J Roth, and F de Pablo
June 1993, Proceedings of the National Academy of Sciences of the United States of America,
L Scavo, and A R Shuldiner, and J Serrano, and R Dashner, and J Roth, and F de Pablo
January 1988, Endocrinology,
L Scavo, and A R Shuldiner, and J Serrano, and R Dashner, and J Roth, and F de Pablo
March 2004, Journal of biochemistry and molecular biology,
L Scavo, and A R Shuldiner, and J Serrano, and R Dashner, and J Roth, and F de Pablo
April 1993, Endocrinology,
Copied contents to your clipboard!