31-P nuclear magnetic resonance studies on serum low and high density lipoproteins: effect of paramagnetic ion. 1975

T O Henderson, and A W Kruski, and L G Davis, and T Glonek, and A M Scanu

A paramagnetic quenching reagent, Mn-2+/EDTA (1:2.2), was developed for the purpose of investigating the phospholipid phosphate groupings of human serum low and high density lipoproteins through the quenching effect of the reagent on the 31-P nuclear magnetic resonance signals from these complexes. Systems investigated included native low and high density serum liproteins (LDL, HDL2, and HDL3), egg phosphatidylcholine vesicles together with appropriate phosphodiester model systems, diethyl phosphate in aqueous buffer, and phosphatidylcholine and sphingomyelin both in anhydrous methanol. The results of these studies indicated that ca. 50 percent of the phospholipid-phosphorus signal of LDL is quenched upon titration as compared to an 80-85 percent figure observed for HDL2 and HDL3. In all cases the spectral effects were totally reversible upon removalof the paramagnetic ion by dialysis. The results of the titration studies indicated a similar but not an identical behavior between HDL2 and HDL3. The results are consistent with model structures of HDL and LDL particles derived from low angle X-ray diffraction.

UI MeSH Term Description Entries
D008075 Lipoproteins, HDL A class of lipoproteins of small size (4-13 nm) and dense (greater than 1.063 g/ml) particles. HDL lipoproteins, synthesized in the liver without a lipid core, accumulate cholesterol esters from peripheral tissues and transport them to the liver for re-utilization or elimination from the body (the reverse cholesterol transport). Their major protein component is APOLIPOPROTEIN A-I. HDL also shuttle APOLIPOPROTEINS C and APOLIPOPROTEINS E to and from triglyceride-rich lipoproteins during their catabolism. HDL plasma level has been inversely correlated with the risk of cardiovascular diseases. High Density Lipoprotein,High-Density Lipoprotein,High-Density Lipoproteins,alpha-Lipoprotein,alpha-Lipoproteins,Heavy Lipoproteins,alpha-1 Lipoprotein,Density Lipoprotein, High,HDL Lipoproteins,High Density Lipoproteins,Lipoprotein, High Density,Lipoprotein, High-Density,Lipoproteins, Heavy,Lipoproteins, High-Density,alpha Lipoprotein,alpha Lipoproteins
D008077 Lipoproteins, LDL A class of lipoproteins of small size (18-25 nm) and light (1.019-1.063 g/ml) particles with a core composed mainly of CHOLESTEROL ESTERS and smaller amounts of TRIGLYCERIDES. The surface monolayer consists mostly of PHOSPHOLIPIDS, a single copy of APOLIPOPROTEIN B-100, and free cholesterol molecules. The main LDL function is to transport cholesterol and cholesterol esters to extrahepatic tissues. Low-Density Lipoprotein,Low-Density Lipoproteins,beta-Lipoprotein,beta-Lipoproteins,LDL(1),LDL(2),LDL-1,LDL-2,LDL1,LDL2,Low-Density Lipoprotein 1,Low-Density Lipoprotein 2,LDL Lipoproteins,Lipoprotein, Low-Density,Lipoproteins, Low-Density,Low Density Lipoprotein,Low Density Lipoprotein 1,Low Density Lipoprotein 2,Low Density Lipoproteins,beta Lipoprotein,beta Lipoproteins
D008345 Manganese A trace element with atomic symbol Mn, atomic number 25, and atomic weight 54.94. It is concentrated in cell mitochondria, mostly in the pituitary gland, liver, pancreas, kidney, and bone, influences the synthesis of mucopolysaccharides, stimulates hepatic synthesis of cholesterol and fatty acids, and is a cofactor in many enzymes, including arginase and alkaline phosphatase in the liver. (From AMA Drug Evaluations Annual 1992, p2035)
D008968 Molecular Conformation The characteristic three-dimensional shape of a molecule. Molecular Configuration,3D Molecular Structure,Configuration, Molecular,Molecular Structure, Three Dimensional,Three Dimensional Molecular Structure,3D Molecular Structures,Configurations, Molecular,Conformation, Molecular,Conformations, Molecular,Molecular Configurations,Molecular Conformations,Molecular Structure, 3D,Molecular Structures, 3D,Structure, 3D Molecular,Structures, 3D Molecular
D009682 Magnetic Resonance Spectroscopy Spectroscopic method of measuring the magnetic moment of elementary particles such as atomic nuclei, protons or electrons. It is employed in clinical applications such as NMR Tomography (MAGNETIC RESONANCE IMAGING). In Vivo NMR Spectroscopy,MR Spectroscopy,Magnetic Resonance,NMR Spectroscopy,NMR Spectroscopy, In Vivo,Nuclear Magnetic Resonance,Spectroscopy, Magnetic Resonance,Spectroscopy, NMR,Spectroscopy, Nuclear Magnetic Resonance,Magnetic Resonance Spectroscopies,Magnetic Resonance, Nuclear,NMR Spectroscopies,Resonance Spectroscopy, Magnetic,Resonance, Magnetic,Resonance, Nuclear Magnetic,Spectroscopies, NMR,Spectroscopy, MR
D010713 Phosphatidylcholines Derivatives of PHOSPHATIDIC ACIDS in which the phosphoric acid is bound in ester linkage to a CHOLINE moiety. Choline Phosphoglycerides,Choline Glycerophospholipids,Phosphatidyl Choline,Phosphatidyl Cholines,Phosphatidylcholine,Choline, Phosphatidyl,Cholines, Phosphatidyl,Glycerophospholipids, Choline,Phosphoglycerides, Choline
D010759 Phosphorus Isotopes Stable phosphorus atoms that have the same atomic number as the element phosphorus, but differ in atomic weight. P-31 is a stable phosphorus isotope. Isotopes, Phosphorus
D011221 Praseodymium An element of the rare earth family of metals. It has the atomic symbol Pr, atomic number 59, and atomic weight 140.91.
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D011487 Protein Conformation The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). Conformation, Protein,Conformations, Protein,Protein Conformations

Related Publications

T O Henderson, and A W Kruski, and L G Davis, and T Glonek, and A M Scanu
April 1969, Chemistry and physics of lipids,
T O Henderson, and A W Kruski, and L G Davis, and T Glonek, and A M Scanu
September 1976, Biochemistry,
T O Henderson, and A W Kruski, and L G Davis, and T Glonek, and A M Scanu
January 1969, Nature,
T O Henderson, and A W Kruski, and L G Davis, and T Glonek, and A M Scanu
December 1972, Chemistry and physics of lipids,
T O Henderson, and A W Kruski, and L G Davis, and T Glonek, and A M Scanu
June 1978, The Journal of biological chemistry,
T O Henderson, and A W Kruski, and L G Davis, and T Glonek, and A M Scanu
November 1965, The Journal of chemical physics,
T O Henderson, and A W Kruski, and L G Davis, and T Glonek, and A M Scanu
January 1986, Methods in enzymology,
T O Henderson, and A W Kruski, and L G Davis, and T Glonek, and A M Scanu
February 1974, Biochemistry,
T O Henderson, and A W Kruski, and L G Davis, and T Glonek, and A M Scanu
May 1992, The Canadian journal of neurological sciences. Le journal canadien des sciences neurologiques,
T O Henderson, and A W Kruski, and L G Davis, and T Glonek, and A M Scanu
November 1965, The Journal of chemical physics,
Copied contents to your clipboard!