Studies on the active transfer of reducing equivalents into mitochondria via the malate-aspartate shuttle. 1975

J Bremer, and E J Davis

1. The effects of mitochondrial energy states onthe extramitochondrial NADH/NAD ratio via a reconstituted malate-aspartate shuttle have been investigated. 2. The transfer of reducing equivalents into isolated mitochondria is stimulated by ATP and by electron transport. The effect of ATP is inhibited by oligomycin. The effect of electron transport is inhibited by uncouplers. 3. Uncoupling of the mitochondria is required for rapid transfer of reducing equivalents out of the mitochondria. 4. A glutamate-stimulated entry of aspartate into energized mitochondria suggests that the malate-aspartate shuttle is to some extent reversible even in a high energy state of the mitochondria. 5. It is concluded that the malate-aspartate shuttle contributes to the formation of the skewed redox situation across the inner mitochondrial membrane, which has a more reduced inside.

UI MeSH Term Description Entries
D008293 Malates Derivatives of malic acid (the structural formula: (COO-)2CH2CHOH), including its salts and esters.
D008930 Mitochondria, Liver Mitochondria in hepatocytes. As in all mitochondria, there are an outer membrane and an inner membrane, together creating two separate mitochondrial compartments: the internal matrix space and a much narrower intermembrane space. In the liver mitochondrion, an estimated 67% of the total mitochondrial proteins is located in the matrix. (From Alberts et al., Molecular Biology of the Cell, 2d ed, p343-4) Liver Mitochondria,Liver Mitochondrion,Mitochondrion, Liver
D009243 NAD A coenzyme composed of ribosylnicotinamide 5'-diphosphate coupled to adenosine 5'-phosphate by pyrophosphate linkage. It is found widely in nature and is involved in numerous enzymatic reactions in which it serves as an electron carrier by being alternately oxidized (NAD+) and reduced (NADH). (Dorland, 27th ed) Coenzyme I,DPN,Diphosphopyridine Nucleotide,Nadide,Nicotinamide-Adenine Dinucleotide,Dihydronicotinamide Adenine Dinucleotide,NADH,Adenine Dinucleotide, Dihydronicotinamide,Dinucleotide, Dihydronicotinamide Adenine,Dinucleotide, Nicotinamide-Adenine,Nicotinamide Adenine Dinucleotide,Nucleotide, Diphosphopyridine
D009840 Oligomycins A closely related group of toxic substances elaborated by various strains of Streptomyces. They are 26-membered macrolides with lactone moieties and double bonds and inhibit various ATPases, causing uncoupling of phosphorylation from mitochondrial respiration. Used as tools in cytochemistry. Some specific oligomycins are RUTAMYCIN, peliomycin, and botrycidin (formerly venturicidin X). Oligomycin
D010084 Oxidation-Reduction A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471). Redox,Oxidation Reduction
D010169 Palmitic Acids A group of 16-carbon fatty acids that contain no double bonds. Acids, Palmitic
D002331 Carnitine A constituent of STRIATED MUSCLE and LIVER. It is an amino acid derivative and an essential cofactor for fatty acid metabolism. Bicarnesine,L-Carnitine,Levocarnitine,Vitamin BT,L Carnitine
D004140 Dinitrophenols Organic compounds that contain two nitro groups attached to a phenol.
D004579 Electron Transport The process by which ELECTRONS are transported from a reduced substrate to molecular OXYGEN. (From Bennington, Saunders Dictionary and Encyclopedia of Laboratory Medicine and Technology, 1984, p270) Respiratory Chain,Chain, Respiratory,Chains, Respiratory,Respiratory Chains,Transport, Electron
D005971 Glutamates Derivatives of GLUTAMIC ACID. Included under this heading are a broad variety of acid forms, salts, esters, and amides that contain the 2-aminopentanedioic acid structure. Glutamic Acid Derivatives,Glutamic Acids,Glutaminic Acids

Related Publications

J Bremer, and E J Davis
October 1976, Journal of molecular and cellular cardiology,
J Bremer, and E J Davis
November 1987, The Journal of biological chemistry,
J Bremer, and E J Davis
October 1973, Archives of biochemistry and biophysics,
J Bremer, and E J Davis
January 1972, Recent advances in studies on cardiac structure and metabolism,
J Bremer, and E J Davis
March 1978, Biochemical and biophysical research communications,
J Bremer, and E J Davis
December 2003, European journal of biochemistry,
J Bremer, and E J Davis
March 2020, Journal of cellular physiology,
J Bremer, and E J Davis
January 2014, Frontiers in neuroscience,
Copied contents to your clipboard!