Evidence for glycosylphosphatidylinositol anchoring of intralumenal alkaline phosphatase of the calf intestine. 1991

E Hoffmann-Blume, and M B Garcia Marenco, and H Ehle, and R Bublitz, and M Schulze, and A Horn
Institute of Biochemistry, Friedrich Schiller University, Jena, Federal Republic of Germany.

1. Considerable amounts of intestinal alkaline phosphatase (AP) were found intralumenally in all animal species investigated, i.e. calf, pig, goat, rat, mouse, guinea pig, hen and carp. The ratios between the total activity of AP found intralumenally and the total intestinal activity vary considerably. Calves and pigs show the highest, i.e. 0.77 and 0.44, respectively, while rodents have much lower ratios. Only 20-34% of the intralumenal alkaline phosphatase (IAP) of the calf and pig is soluble and not within the sediment after centrifugation at 135,000 x g for 60 min. whereas the IAP of rodents is soluble in the range of 60-72% of the total IAP. 2. For the IAP of the mucosa and chyme of calf, all criteria were found which are generally used, indicating a glycosylphosphatidylinositol (GlcPtdIns) anchor as proved by strong hydrophobicity using Triton X-114 phase partitioning, phenyl-Sepharose binding and enzyme aggregation, and the susceptibility to phosphatidylinositol-specific phospholipase C (PtdIns-PLC) and papain digestion. 3. More than 80% of the mucosa alkaline phosphatase (MAP) of the proximal part of the intestine and of the particulate fraction of IAP exhibit these criteria indicating the presence of the GlcPtdIns-anchor structure, whereas the anchor content of the soluble intralumenal enzyme decreases from the pylorus to the ileocecal junction. 4. MAP partially purified to a specific activity of 1747 IU/mg retains the anchor structure. 5. The results presented indicate that the release of large amounts of AP into the chyme is realized without splitting the GlcPtdIns anchor. The possible intralumenal function of this form of AP is discussed.

UI MeSH Term Description Entries
D007413 Intestinal Mucosa Lining of the INTESTINES, consisting of an inner EPITHELIUM, a middle LAMINA PROPRIA, and an outer MUSCULARIS MUCOSAE. In the SMALL INTESTINE, the mucosa is characterized by a series of folds and abundance of absorptive cells (ENTEROCYTES) with MICROVILLI. Intestinal Epithelium,Intestinal Glands,Epithelium, Intestinal,Gland, Intestinal,Glands, Intestinal,Intestinal Gland,Mucosa, Intestinal
D007421 Intestine, Small The portion of the GASTROINTESTINAL TRACT between the PYLORUS of the STOMACH and the ILEOCECAL VALVE of the LARGE INTESTINE. It is divisible into three portions: the DUODENUM, the JEJUNUM, and the ILEUM. Small Intestine,Intestines, Small,Small Intestines
D010206 Papain A proteolytic enzyme obtained from Carica papaya. It is also the name used for a purified mixture of papain and CHYMOPAPAIN that is used as a topical enzymatic debriding agent. EC 3.4.22.2. Tromasin
D010716 Phosphatidylinositols Derivatives of phosphatidic acids in which the phosphoric acid is bound in ester linkage to the hexahydroxy alcohol, myo-inositol. Complete hydrolysis yields 1 mole of glycerol, phosphoric acid, myo-inositol, and 2 moles of fatty acids. Inositide Phospholipid,Inositol Phosphoglyceride,Inositol Phosphoglycerides,Inositol Phospholipid,Phosphoinositide,Phosphoinositides,PtdIns,Inositide Phospholipids,Inositol Phospholipids,Phosphatidyl Inositol,Phosphatidylinositol,Inositol, Phosphatidyl,Phosphoglyceride, Inositol,Phosphoglycerides, Inositol,Phospholipid, Inositide,Phospholipid, Inositol,Phospholipids, Inositide,Phospholipids, Inositol
D010727 Phosphoric Diester Hydrolases A class of enzymes that catalyze the hydrolysis of one of the two ester bonds in a phosphodiester compound. EC 3.1.4. Phosphodiesterase,Phosphodiesterases,Hydrolases, Phosphoric Diester
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D011817 Rabbits A burrowing plant-eating mammal with hind limbs that are longer than its fore limbs. It belongs to the family Leporidae of the order Lagomorpha, and in contrast to hares, possesses 22 instead of 24 pairs of chromosomes. Belgian Hare,New Zealand Rabbit,New Zealand Rabbits,New Zealand White Rabbit,Rabbit,Rabbit, Domestic,Chinchilla Rabbits,NZW Rabbits,New Zealand White Rabbits,Oryctolagus cuniculus,Chinchilla Rabbit,Domestic Rabbit,Domestic Rabbits,Hare, Belgian,NZW Rabbit,Rabbit, Chinchilla,Rabbit, NZW,Rabbit, New Zealand,Rabbits, Chinchilla,Rabbits, Domestic,Rabbits, NZW,Rabbits, New Zealand,Zealand Rabbit, New,Zealand Rabbits, New,cuniculus, Oryctolagus
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D002347 Carps Common name for a number of different species of fish in the family Cyprinidae. This includes, among others, the common carp, crucian carp, grass carp, and silver carp. Carassius carassius,Crucian Carp,Cyprinus,Grass Carp,Carp,Ctenopharyngodon idellus,Cyprinus carpio,Hypophthalmichthys molitrix,Koi Carp,Silver Carp,Carp, Crucian,Carp, Grass,Carp, Koi,Carp, Silver,Carps, Crucian,Carps, Grass,Carps, Silver,Crucian Carps,Grass Carps,Silver Carps
D002417 Cattle Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor. Beef Cow,Bos grunniens,Bos indicus,Bos indicus Cattle,Bos taurus,Cow,Cow, Domestic,Dairy Cow,Holstein Cow,Indicine Cattle,Taurine Cattle,Taurus Cattle,Yak,Zebu,Beef Cows,Bos indicus Cattles,Cattle, Bos indicus,Cattle, Indicine,Cattle, Taurine,Cattle, Taurus,Cattles, Bos indicus,Cattles, Indicine,Cattles, Taurine,Cattles, Taurus,Cow, Beef,Cow, Dairy,Cow, Holstein,Cows,Dairy Cows,Domestic Cow,Domestic Cows,Indicine Cattles,Taurine Cattles,Taurus Cattles,Yaks,Zebus

Related Publications

E Hoffmann-Blume, and M B Garcia Marenco, and H Ehle, and R Bublitz, and M Schulze, and A Horn
January 1985, Biomedica biochimica acta,
E Hoffmann-Blume, and M B Garcia Marenco, and H Ehle, and R Bublitz, and M Schulze, and A Horn
October 1993, European journal of biochemistry,
E Hoffmann-Blume, and M B Garcia Marenco, and H Ehle, and R Bublitz, and M Schulze, and A Horn
January 1987, Biomedica biochimica acta,
E Hoffmann-Blume, and M B Garcia Marenco, and H Ehle, and R Bublitz, and M Schulze, and A Horn
October 1995, Analytical biochemistry,
E Hoffmann-Blume, and M B Garcia Marenco, and H Ehle, and R Bublitz, and M Schulze, and A Horn
May 1996, European journal of biochemistry,
E Hoffmann-Blume, and M B Garcia Marenco, and H Ehle, and R Bublitz, and M Schulze, and A Horn
April 1985, FEBS letters,
E Hoffmann-Blume, and M B Garcia Marenco, and H Ehle, and R Bublitz, and M Schulze, and A Horn
November 1975, The Biochemical journal,
E Hoffmann-Blume, and M B Garcia Marenco, and H Ehle, and R Bublitz, and M Schulze, and A Horn
November 2004, Organic & biomolecular chemistry,
E Hoffmann-Blume, and M B Garcia Marenco, and H Ehle, and R Bublitz, and M Schulze, and A Horn
January 1982, Preparative biochemistry,
E Hoffmann-Blume, and M B Garcia Marenco, and H Ehle, and R Bublitz, and M Schulze, and A Horn
March 1976, Hoppe-Seyler's Zeitschrift fur physiologische Chemie,
Copied contents to your clipboard!