Application of spin trapping to human phagocytic cells: insight into conditions for formation and limitation of hydroxyl radical. 1991

M S Cohen, and B E Britigan, and S Pou, and G M Rosen
Department of Medicine, University of North Carolina, Chapel Hill 27599.

In recent years spin trapping techniques have been used extensively to better understand the free radical biology of phagocytic cells. These results demonstrate that spin trapping is of adequate sensitivity to detect superoxide and/or hydroxyl radical generated by these cells, and that spin trapping is capable of measuring phagosomal radicals as well. However, neither neutrophils, monocytes, nor monocyte derived macrophages generate hydroxyl radical in the absence of exogenous iron. Furthermore, neutrophil lactoferrin and myeloperoxidase limit the magnitude (and in the case of lactoferrin the duration) of hydroxyl radical formed by neutrophils in an iron catalyzed system. Since monocytic phagocytes possess no lactoferrin, and limited myeloperoxidase, hydroxyl radical may play an important role in the inflammatory behavior of mononuclear phagocytes.

UI MeSH Term Description Entries
D007249 Inflammation A pathological process characterized by injury or destruction of tissues caused by a variety of cytologic and chemical reactions. It is usually manifested by typical signs of pain, heat, redness, swelling, and loss of function. Innate Inflammatory Response,Inflammations,Inflammatory Response, Innate,Innate Inflammatory Responses
D008247 Lysosomes A class of morphologically heterogeneous cytoplasmic particles in animal and plant tissues characterized by their content of hydrolytic enzymes and the structure-linked latency of these enzymes. The intracellular functions of lysosomes depend on their lytic potential. The single unit membrane of the lysosome acts as a barrier between the enzymes enclosed in the lysosome and the external substrate. The activity of the enzymes contained in lysosomes is limited or nil unless the vesicle in which they are enclosed is ruptured or undergoes MEMBRANE FUSION. (From Rieger et al., Glossary of Genetics: Classical and Molecular, 5th ed). Autolysosome,Autolysosomes,Lysosome
D010586 Phagocytes Cells that can carry out the process of PHAGOCYTOSIS. Phagocyte,Phagocytic Cell,Phagocytic Cells,Cell, Phagocytic,Cells, Phagocytic
D010587 Phagocytosis The engulfing and degradation of microorganisms; other cells that are dead, dying, or pathogenic; and foreign particles by phagocytic cells (PHAGOCYTES). Phagocytoses
D003497 Cyclic N-Oxides Heterocyclic compounds in which an oxygen is attached to a cyclic nitrogen. Heterocyclic N-Oxides,Cyclic N Oxides,Heterocyclic N Oxides,N Oxides, Cyclic,N-Oxides, Cyclic,N-Oxides, Heterocyclic,Oxides, Cyclic N
D005609 Free Radicals Highly reactive molecules with an unsatisfied electron valence pair. Free radicals are produced in both normal and pathological processes. Free radicals include reactive oxygen and nitrogen species (RONS). They are proven or suspected agents of tissue damage in a wide variety of circumstances including radiation, damage from environment chemicals, and aging. Natural and pharmacological prevention of free radical damage is being actively investigated. Free Radical
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D006878 Hydroxides Inorganic compounds that contain the OH- group.
D013113 Spin Labels Molecules which contain an atom or a group of atoms exhibiting an unpaired electron spin that can be detected by electron spin resonance spectroscopy and can be bonded to another molecule. (McGraw-Hill Dictionary of Chemical and Technical Terms, 4th ed) Spin Label,Label, Spin,Labels, Spin
D013482 Superoxide Dismutase An oxidoreductase that catalyzes the reaction between SUPEROXIDES and hydrogen to yield molecular oxygen and hydrogen peroxide. The enzyme protects the cell against dangerous levels of superoxide. Hemocuprein,Ag-Zn Superoxide Dismutase,Cobalt Superoxide Dismutase,Cu-Superoxide Dismutase,Erythrocuprein,Fe-Superoxide Dismutase,Fe-Zn Superoxide Dismutase,Iron Superoxide Dismutase,Manganese Superoxide Dismutase,Mn-SOD,Mn-Superoxide Dismutase,Ag Zn Superoxide Dismutase,Cu Superoxide Dismutase,Dismutase, Ag-Zn Superoxide,Dismutase, Cobalt Superoxide,Dismutase, Cu-Superoxide,Dismutase, Fe-Superoxide,Dismutase, Fe-Zn Superoxide,Dismutase, Iron Superoxide,Dismutase, Manganese Superoxide,Dismutase, Mn-Superoxide,Dismutase, Superoxide,Fe Superoxide Dismutase,Fe Zn Superoxide Dismutase,Mn SOD,Mn Superoxide Dismutase,Superoxide Dismutase, Ag-Zn,Superoxide Dismutase, Cobalt,Superoxide Dismutase, Fe-Zn,Superoxide Dismutase, Iron,Superoxide Dismutase, Manganese

Related Publications

M S Cohen, and B E Britigan, and S Pou, and G M Rosen
August 1983, Plant physiology,
M S Cohen, and B E Britigan, and S Pou, and G M Rosen
January 1979, Journal of applied physiology: respiratory, environmental and exercise physiology,
M S Cohen, and B E Britigan, and S Pou, and G M Rosen
September 1991, Biochemical and biophysical research communications,
M S Cohen, and B E Britigan, and S Pou, and G M Rosen
January 1995, Archives of biochemistry and biophysics,
M S Cohen, and B E Britigan, and S Pou, and G M Rosen
March 1980, Archives of biochemistry and biophysics,
M S Cohen, and B E Britigan, and S Pou, and G M Rosen
August 1982, International journal of radiation biology and related studies in physics, chemistry, and medicine,
M S Cohen, and B E Britigan, and S Pou, and G M Rosen
July 1995, Molecular and cellular biochemistry,
M S Cohen, and B E Britigan, and S Pou, and G M Rosen
September 2022, Archives of biochemistry and biophysics,
M S Cohen, and B E Britigan, and S Pou, and G M Rosen
October 1991, Biochimica et biophysica acta,
M S Cohen, and B E Britigan, and S Pou, and G M Rosen
September 1978, Archives of biochemistry and biophysics,
Copied contents to your clipboard!