1. Rat renal tubules were isolated by incubation with collagenase. The Na+ concentration in the tubules at 37 degrees C was increased by additions of g-strophantin and L-alanine. The increase of Na+ in the presence of both g-strophantin and L-alanine was stronger than with either alone. 2. Radioactive sodium (22-Na), which was taken up by the tubules at 0 degrees C in K+-free medium, was more slowly washed out in the buffer with added g-strophantin than in the control buffer, but L-alanine had no effect. 3. At 0 degrees C incubation without K+, g-strophantin did not affect the 22-Na transport of the tubules. But under the same conditions, L-alanine increased Na+ uptake significantly, and in conjunction with it, L-alanine uptake was also increased. 4. The relationship between L-alanine uptake and intra- extracellular Na+ concentration gradients was linear. The ration of L-alanine to Na+ uptake at 0 degrees C was about 1:2. 5. In the incubation without K+ at 0 degrees C, L-alanine could be accumulated in tubules against the chemical concentration gradient (about 1.5-fold). 6. In the incubation without K+ at 37 degrees C, the L-alanine concentration in tubules after 5 min was already steady (Ci/Ce = 2.2), but with K+ it was not stabilized after 10 min. The ration Ci/Ce with K+ WAS HIGHER THAN WITHOUT K+. 7. G-Strophantin, p-hydroxymercuribenzoate, amiloride, and 2,4-dinitrophenol inhibited L-alanine uptake in the tubules and at the same time increased Na+ concentration. The relationship between the L-alanine uptakes inhibited by g-strophantin, amiloride and dinitrophenol, and the respective intra- extracellular Na+ concentration gradients was strikingly linear. But in the case of p-hydroxymercuribenzoate there was no correlation. 8. The results indicate that L-alanine transport into the renal tubules might be regulated mainly by the intra- extracellular Na+ concentration gradient and that inhibitors such as g-strophantin, amiloride, and dinitrophenol could have a secondary effect on the L-alanine transport which follows the change of Na+ concentration in cells. p-Hydroxymercuribenzoate might have an inhibiting effect on the binding of carrier with Na+ and/or L-alanine.