Characterization of high-level quinolone resistance in Campylobacter jejuni. 1991

T D Gootz, and B A Martin
Central Research Division, Pfizer Inc., Groton, Connecticut 06340.

High-level resistance to quinolones has previously been shown to occur in Campylobacter spp. both in vitro and in patients treated with quinolones. We have selected isolates that are resistant to quinolones by plating cells from a susceptible C. jejuni strain, UA535, on medium containing nalidixic acid at 32 micrograms/ml. Fluctuation analysis indicated that resistance occurred by mutation at a frequency of 5 x 10(-8) per cell plated. Unlike what is observed with other gram-negative organisms, the nalidixic acid-resistant mutants demonstrated high-level cross-resistance (MIC, greater than or equal to 4 micrograms/ml) to newer quinolones, including ciprofloxacin, norfloxacin, and temafloxacin, yet remained susceptible to coumermycin A1 and several other unrelated antibiotics. Mutants with an identical resistance phenotype could also be selected from UA535 with ciprofloxacin and norfloxacin at a similar frequency. To study the mechanism of quinolone resistance, DNA gyrases were purified from C. jejuni UA535 and two resistant mutants by heparin-agarose and novobiocin-Sepharose chromatography. After the respective enzyme concentrations were adjusted to equivalent units of activity in the DNA supercoiling reaction, the DNA gyrases from the resistant mutants were found to be 100-fold less susceptible than the wild-type enzyme to inhibition by quinolones. Subunit switching experiments with purified A and B subunits from the wild type and one of the quinolone-resistant mutants indicated that an alteration in the A subunit was responsible for resistance. These results show that a single-step mutation can occur in vitro in the gene encoding DNA gyrase in C. jejuni, producing clinically relevant levels of resistance to the newer quinolones.

UI MeSH Term Description Entries
D008826 Microbial Sensitivity Tests Any tests that demonstrate the relative efficacy of different chemotherapeutic agents against specific microorganisms (i.e., bacteria, fungi, viruses). Bacterial Sensitivity Tests,Drug Sensitivity Assay, Microbial,Minimum Inhibitory Concentration,Antibacterial Susceptibility Breakpoint Determination,Antibiogram,Antimicrobial Susceptibility Breakpoint Determination,Bacterial Sensitivity Test,Breakpoint Determination, Antibacterial Susceptibility,Breakpoint Determination, Antimicrobial Susceptibility,Fungal Drug Sensitivity Tests,Fungus Drug Sensitivity Tests,Sensitivity Test, Bacterial,Sensitivity Tests, Bacterial,Test, Bacterial Sensitivity,Tests, Bacterial Sensitivity,Viral Drug Sensitivity Tests,Virus Drug Sensitivity Tests,Antibiograms,Concentration, Minimum Inhibitory,Concentrations, Minimum Inhibitory,Inhibitory Concentration, Minimum,Inhibitory Concentrations, Minimum,Microbial Sensitivity Test,Minimum Inhibitory Concentrations,Sensitivity Test, Microbial,Sensitivity Tests, Microbial,Test, Microbial Sensitivity,Tests, Microbial Sensitivity
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D009268 Nalidixic Acid A synthetic 1,8-naphthyridine antimicrobial agent with a limited bacteriocidal spectrum. It is an inhibitor of the A subunit of bacterial DNA GYRASE. Nalidixin,Nalidixate Sodium,Nalidixate Sodium Anhydrous,Nevigramon,Sodium Nalidixic Acid, Anhydrous,Sodium Nalidixic Acid, Monohydrate,Acid, Nalidixic,Anhydrous, Nalidixate Sodium,Sodium Anhydrous, Nalidixate,Sodium, Nalidixate
D009643 Norfloxacin A synthetic fluoroquinolone (FLUOROQUINOLONES) with broad-spectrum antibacterial activity against most gram-negative and gram-positive bacteria. Norfloxacin inhibits bacterial DNA GYRASE. AM-0715,AM-715,MK-0366,MK-366,MK0366,MK366,Noroxin,AM 0715,AM 715,AM0715,MK 0366,MK 366
D002939 Ciprofloxacin A broad-spectrum antimicrobial carboxyfluoroquinoline. Bay-09867,Ciprinol,Cipro,Ciprofloxacin Hydrochloride,Ciprofloxacin Hydrochloride Anhydrous,Ciprofloxacin Monohydrochloride Monohydrate,Anhydrous, Ciprofloxacin Hydrochloride,Bay 09867,Bay09867,Hydrochloride Anhydrous, Ciprofloxacin,Hydrochloride, Ciprofloxacin,Monohydrate, Ciprofloxacin Monohydrochloride,Monohydrochloride Monohydrate, Ciprofloxacin
D004250 DNA Topoisomerases, Type II DNA TOPOISOMERASES that catalyze ATP-dependent breakage of both strands of DNA, passage of the unbroken strands through the breaks, and rejoining of the broken strands. These enzymes bring about relaxation of the supercoiled DNA and resolution of a knotted circular DNA duplex. DNA Topoisomerase (ATP-Hydrolysing),DNA Topoisomerase II,DNA Topoisomerase II alpha,DNA Topoisomerase II beta,DNA Type 2 Topoisomerase,TOP2A Protein,TOP2B Protein,Topoisomerase II,Topoisomerase II alpha,Topoisomerase II beta,Type II DNA Topoisomerase,alpha, Topoisomerase II,beta, Topoisomerase II
D004278 DNA, Superhelical Circular duplex DNA isolated from viruses, bacteria and mitochondria in supercoiled or supertwisted form. This superhelical DNA is endowed with free energy. During transcription, the magnitude of RNA initiation is proportional to the DNA superhelicity. DNA, Supercoiled,DNA, Supertwisted,Supercoiled DNA,Superhelical DNA,Supertwisted DNA
D004352 Drug Resistance, Microbial The ability of microorganisms, especially bacteria, to resist or to become tolerant to chemotherapeutic agents, antimicrobial agents, or antibiotics. This resistance may be acquired through gene mutation or foreign DNA in transmissible plasmids (R FACTORS). Antibiotic Resistance,Antibiotic Resistance, Microbial,Antimicrobial Resistance, Drug,Antimicrobial Drug Resistance,Antimicrobial Drug Resistances,Antimicrobial Resistances, Drug,Drug Antimicrobial Resistance,Drug Antimicrobial Resistances,Drug Resistances, Microbial,Resistance, Antibiotic,Resistance, Drug Antimicrobial,Resistances, Drug Antimicrobial
D000890 Anti-Infective Agents Substances that prevent infectious agents or organisms from spreading or kill infectious agents in order to prevent the spread of infection. Anti-Infective Agent,Anti-Microbial Agent,Antimicrobial Agent,Microbicide,Microbicides,Anti-Microbial Agents,Antiinfective Agents,Antimicrobial Agents,Agent, Anti-Infective,Agent, Anti-Microbial,Agent, Antimicrobial,Agents, Anti-Infective,Agents, Anti-Microbial,Agents, Antiinfective,Agents, Antimicrobial,Anti Infective Agent,Anti Infective Agents,Anti Microbial Agent,Anti Microbial Agents
D015363 Quinolones A group of derivatives of naphthyridine carboxylic acid, quinoline carboxylic acid, or NALIDIXIC ACID. Ketoquinoline,Ketoquinolines,Oxoquinoline,Oxoquinolines,Quinolinone,Quinolinones,Quinolone

Related Publications

T D Gootz, and B A Martin
July 1995, The Journal of antimicrobial chemotherapy,
T D Gootz, and B A Martin
October 1991, Antimicrobial agents and chemotherapy,
T D Gootz, and B A Martin
January 1992, Scandinavian journal of infectious diseases,
T D Gootz, and B A Martin
October 2016, Drug testing and analysis,
T D Gootz, and B A Martin
March 2003, The Journal of antimicrobial chemotherapy,
T D Gootz, and B A Martin
May 2006, Applied and environmental microbiology,
T D Gootz, and B A Martin
March 2016, Diagnostic microbiology and infectious disease,
T D Gootz, and B A Martin
December 1983, Antimicrobial agents and chemotherapy,
Copied contents to your clipboard!