Proteolysis of nuclear proteins by mu-calpain and m-calpain. 1991

R L Mellgren
Department of Pharmacology and Therapeutics, Medical College of Ohio, Toledo 43699.

Purified calpains are capable of proteolyzing several high Mr nuclear proteins and solubilizing a histone H1 kinase activity from rat liver nuclei upon exposure to 10(-6) - 10(-5) M Ca2+. Major nuclear substrates displayed apparent molecular masses of 200, 130, 120, and 60 kDa on Coomassie Blue-stained SDS-PAGE gels. The nuclear proteins and the H1 kinase were released from Triton-treated nuclei following incubation with buffer containing 0.5 M NaCl. They therefore appeared to be internal nuclear matrix proteins. The nuclear H1 kinase activity solubilized by incubation with m-calpain was eluted in the void volume of a Bio-Gel A-1.5m column, indicating an apparent mass greater than 1,500 kDa. Treatment of the calpain-solubilized kinase with 0.5 M NaCl dissociated it to a form having an apparent mass of 300 kDa (Stokes radius = 5.6 nm), suggesting that the 300-kDa (Stokes radius = 5.6 nm), nuclei by calpain treatment as a large complex containing other internal matrix proteins. Purified human erythrocyte mu-calpain was capable of proteolyzing the nuclear matrix proteins at 10(-6) M Ca2+. In contrast, human erythrocyte multicatalytic protease complex produced little cleavage of the nuclear proteins. Proteolysis of nuclear proteins by either mu-calpain or m-calpain was inhibited by calpastatin. These experiments suggest a physiologic role for the calpains in the turnover of nuclear proteins.

UI MeSH Term Description Entries
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D008970 Molecular Weight The sum of the weight of all the atoms in a molecule. Molecular Weights,Weight, Molecular,Weights, Molecular
D009097 Multienzyme Complexes Systems of enzymes which function sequentially by catalyzing consecutive reactions linked by common metabolic intermediates. They may involve simply a transfer of water molecules or hydrogen atoms and may be associated with large supramolecular structures such as MITOCHONDRIA or RIBOSOMES. Complexes, Multienzyme
D009687 Nuclear Proteins Proteins found in the nucleus of a cell. Do not confuse with NUCLEOPROTEINS which are proteins conjugated with nucleic acids, that are not necessarily present in the nucleus. Nucleolar Protein,Nucleolar Proteins,Nuclear Protein,Protein, Nuclear,Protein, Nucleolar,Proteins, Nuclear,Proteins, Nucleolar
D010449 Peptide Mapping Analysis of PEPTIDES that are generated from the digestion or fragmentation of a protein or mixture of PROTEINS, by ELECTROPHORESIS; CHROMATOGRAPHY; or MASS SPECTROMETRY. The resulting peptide fingerprints are analyzed for a variety of purposes including the identification of the proteins in a sample, GENETIC POLYMORPHISMS, patterns of gene expression, and patterns diagnostic for diseases. Fingerprints, Peptide,Peptide Fingerprinting,Protein Fingerprinting,Fingerprints, Protein,Fingerprint, Peptide,Fingerprint, Protein,Fingerprinting, Peptide,Fingerprinting, Protein,Mapping, Peptide,Peptide Fingerprint,Peptide Fingerprints,Protein Fingerprint,Protein Fingerprints
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002135 Calcium-Binding Proteins Proteins to which calcium ions are bound. They can act as transport proteins, regulator proteins, or activator proteins. They typically contain EF HAND MOTIFS. Calcium Binding Protein,Calcium-Binding Protein,Calcium Binding Proteins,Binding Protein, Calcium,Binding Proteins, Calcium,Protein, Calcium Binding,Protein, Calcium-Binding
D002154 Calpain Cysteine proteinase found in many tissues. Hydrolyzes a variety of endogenous proteins including NEUROPEPTIDES; CYTOSKELETAL PROTEINS; proteins from SMOOTH MUSCLE; CARDIAC MUSCLE; liver; platelets; and erythrocytes. Two subclasses having high and low calcium sensitivity are known. Removes Z-discs and M-lines from myofibrils. Activates phosphorylase kinase and cyclic nucleotide-independent protein kinase. This enzyme was formerly listed as EC 3.4.22.4. Calcium-Activated Neutral Protease,Calcium-Dependent Neutral Proteinase,Ca2+-Activated Protease,Calcium-Activated Neutral Proteinase,Calcium-Activated Protease,Calcium-Dependent Neutral Protease,Calpain I,Calpain II,Desminase,Ca2+ Activated Protease,Calcium Activated Neutral Protease,Calcium Activated Neutral Proteinase,Calcium Activated Protease,Calcium Dependent Neutral Protease,Calcium Dependent Neutral Proteinase,Neutral Protease, Calcium-Activated,Neutral Protease, Calcium-Dependent,Neutral Proteinase, Calcium-Activated,Neutral Proteinase, Calcium-Dependent,Protease, Ca2+-Activated,Protease, Calcium-Activated,Protease, Calcium-Activated Neutral,Protease, Calcium-Dependent Neutral,Proteinase, Calcium-Activated Neutral,Proteinase, Calcium-Dependent Neutral
D003546 Cysteine Endopeptidases ENDOPEPTIDASES which have a cysteine involved in the catalytic process. This group of enzymes is inactivated by CYSTEINE PROTEINASE INHIBITORS such as CYSTATINS and SULFHYDRYL REAGENTS.
D006656 Protamine Kinase An aspect of protein kinase (EC 2.7.1.37) in which serine residues in protamines and histones are phosphorylated in the presence of ATP. Histone Kinase,Kinase, Histone,Kinase, Protamine

Related Publications

R L Mellgren
August 1998, Biochemical and biophysical research communications,
R L Mellgren
December 2000, Journal of biochemistry,
R L Mellgren
January 2000, Biochemical and biophysical research communications,
R L Mellgren
December 1996, The Journal of biological chemistry,
R L Mellgren
May 2003, Biochimica et biophysica acta,
R L Mellgren
January 2000, Methods in molecular biology (Clifton, N.J.),
Copied contents to your clipboard!