A TGF-beta1-dependent autocrine loop regulates the structure of focal adhesions in hypertrophic scar fibroblasts. 2006

Ganary Dabiri, and Anelisa Campaner, and Jeffrey R Morgan, and Livingston Van De Water
Center for Cell Biology and Cancer Research, Albany Medical College, 47 New Scotland Avenue, Albany, NY 12208, USA.

Following injury, fibroblasts migrate into wounds and differentiate into alpha smooth muscle cell actin (SMCA)-positive cells, termed myofibroblasts, that assemble and remodel the scar. Cultured myofibroblasts assemble larger focal adhesions than do normal dermal fibroblasts and these focal adhesions attach to alpha SMCA-rich stress fibers. Following severe traumatic or thermal injury to the dermis, hypertrophic scars (HTSs) often develop and these scar fibroblasts (HTSFs) express alpha SMCA persistently. We now report that HTSFs stably display large focal adhesions as a consequence of both the autocrine production and activation of transforming growth factor beta1 (TGF-beta1). We also observe that myofibroblasts elaborating larger focal adhesions adhere more tightly to fibronectin. Conditioned medium from HTSFs induces focal adhesion growth in normal fibroblasts and this is blocked by pre-incubation with a soluble TGF-beta1 receptor mimetic. Human foreskin fibroblasts transduced with a retrovirus encoding active TGF-beta1 elaborate large focal adhesions, whereas fibroblasts overexpressing normal, latent TGF-beta1 do not. We conclude that the large focal adhesions found in pathogenic myofibroblasts arise through an autocrine loop involving the production and activation of TGF-beta1; these adhesions likely mediate both tighter adhesion to wound matrix and the exuberant wound contraction observed in pathogenic scars.

UI MeSH Term Description Entries
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D005347 Fibroblasts Connective tissue cells which secrete an extracellular matrix rich in collagen and other macromolecules. Fibroblast
D005353 Fibronectins Glycoproteins found on the surfaces of cells, particularly in fibrillar structures. The proteins are lost or reduced when these cells undergo viral or chemical transformation. They are highly susceptible to proteolysis and are substrates for activated blood coagulation factor VIII. The forms present in plasma are called cold-insoluble globulins. Cold-Insoluble Globulins,LETS Proteins,Fibronectin,Opsonic Glycoprotein,Opsonic alpha(2)SB Glycoprotein,alpha 2-Surface Binding Glycoprotein,Cold Insoluble Globulins,Globulins, Cold-Insoluble,Glycoprotein, Opsonic,Proteins, LETS,alpha 2 Surface Binding Glycoprotein
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000328 Adult A person having attained full growth or maturity. Adults are of 19 through 44 years of age. For a person between 19 and 24 years of age, YOUNG ADULT is available. Adults
D012190 Retroviridae Family of RNA viruses that infects birds and mammals and encodes the enzyme reverse transcriptase. The family contains seven genera: DELTARETROVIRUS; LENTIVIRUS; RETROVIRUSES TYPE B, MAMMALIAN; ALPHARETROVIRUS; GAMMARETROVIRUS; RETROVIRUSES TYPE D; and SPUMAVIRUS. A key feature of retrovirus biology is the synthesis of a DNA copy of the genome which is integrated into cellular DNA. After integration it is sometimes not expressed but maintained in a latent state (PROVIRUSES). Leukemogenic Viruses,Leukoviruses,Oncornaviruses,Oncovirinae,Oncoviruses,Oncoviruses, Type C,RNA Tumor Viruses,Retroviruses,Type C Oncoviruses,C Oncovirus, Type,C Oncoviruses, Type,Leukemogenic Virus,Leukovirus,Oncornavirus,Oncovirus,Oncovirus, Type C,RNA Tumor Virus,Retrovirus,Tumor Virus, RNA,Tumor Viruses, RNA,Type C Oncovirus,Virus, Leukemogenic,Virus, RNA Tumor,Viruses, Leukemogenic,Viruses, RNA Tumor
D016212 Transforming Growth Factor beta A factor synthesized in a wide variety of tissues. It acts synergistically with TGF-alpha in inducing phenotypic transformation and can also act as a negative autocrine growth factor. TGF-beta has a potential role in embryonal development, cellular differentiation, hormone secretion, and immune function. TGF-beta is found mostly as homodimer forms of separate gene products TGF-beta1, TGF-beta2 or TGF-beta3. Heterodimers composed of TGF-beta1 and 2 (TGF-beta1.2) or of TGF-beta2 and 3 (TGF-beta2.3) have been isolated. The TGF-beta proteins are synthesized as precursor proteins. Bone-Derived Transforming Growth Factor,Platelet Transforming Growth Factor,TGF-beta,Milk Growth Factor,TGFbeta,Bone Derived Transforming Growth Factor,Factor, Milk Growth,Growth Factor, Milk
D017077 Culture Media, Conditioned Culture media containing biologically active components obtained from previously cultured cells or tissues that have released into the media substances affecting certain cell functions (e.g., growth, lysis). Conditioned Culture Media,Conditioned Culture Medium,Conditioned Media,Conditioned Medium,Culture Medium, Conditioned,Media, Conditioned,Medium, Conditioned
D017439 Cicatrix, Hypertrophic An elevated scar, resembling a KELOID, but which does not spread into surrounding tissues. It is formed by enlargement and overgrowth of cicatricial tissue and regresses spontaneously. Scars, Hypertrophic,Cicatrices, Hypertrophic,Hypertrophic Cicatrices,Hypertrophic Cicatrix,Hypertrophic Scar,Hypertrophic Scars,Scar, Hypertrophic
D053773 Transforming Growth Factor beta1 A subtype of transforming growth factor beta that is synthesized by a wide variety of cells. It is synthesized as a precursor molecule that is cleaved to form mature TGF-beta 1 and TGF-beta1 latency-associated peptide. The association of the cleavage products results in the formation a latent protein which must be activated to bind its receptor. Defects in the gene that encodes TGF-beta1 are the cause of CAMURATI-ENGELMANN SYNDROME. TGF-beta1,Transforming Growth Factor-beta1,TGF-beta-1,TGF-beta1 Latency-Associated Protein,TGF-beta1LAP,Transforming Growth Factor beta 1 Latency Associated Peptide,Transforming Growth Factor beta I,Latency-Associated Protein, TGF-beta1,TGF beta 1,TGF beta1 Latency Associated Protein,TGF beta1LAP

Related Publications

Ganary Dabiri, and Anelisa Campaner, and Jeffrey R Morgan, and Livingston Van De Water
October 2008, The Journal of investigative dermatology,
Ganary Dabiri, and Anelisa Campaner, and Jeffrey R Morgan, and Livingston Van De Water
July 2009, Journal of Asian natural products research,
Ganary Dabiri, and Anelisa Campaner, and Jeffrey R Morgan, and Livingston Van De Water
July 2004, Molecular cell,
Ganary Dabiri, and Anelisa Campaner, and Jeffrey R Morgan, and Livingston Van De Water
August 2007, Burns : journal of the International Society for Burn Injuries,
Ganary Dabiri, and Anelisa Campaner, and Jeffrey R Morgan, and Livingston Van De Water
June 2009, Burns : journal of the International Society for Burn Injuries,
Ganary Dabiri, and Anelisa Campaner, and Jeffrey R Morgan, and Livingston Van De Water
July 2004, Molecular cell,
Ganary Dabiri, and Anelisa Campaner, and Jeffrey R Morgan, and Livingston Van De Water
September 2013, International journal of molecular medicine,
Ganary Dabiri, and Anelisa Campaner, and Jeffrey R Morgan, and Livingston Van De Water
September 2008, Zhonghua zheng xing wai ke za zhi = Zhonghua zhengxing waike zazhi = Chinese journal of plastic surgery,
Ganary Dabiri, and Anelisa Campaner, and Jeffrey R Morgan, and Livingston Van De Water
January 2014, PloS one,
Ganary Dabiri, and Anelisa Campaner, and Jeffrey R Morgan, and Livingston Van De Water
October 2007, Journal of dermatological science,
Copied contents to your clipboard!