Cyclic GMP down-regulates atrial natriuretic peptide receptors on cultured vascular endothelial cells. 1991

J Kato, and K L Lanier-Smith, and M G Currie
Department of Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston 29425.

Down-regulation of atrial natriuretic peptide (ANP) receptors was investigated using a cultured bovine pulmonary artery endothelial (CPAE) cell line. Endothelial cells have been shown to possess two subtypes of ANP receptors, a guanylate cyclase-coupled receptor (B-receptor) and a clearance receptor (C-receptor). The treatment with APIII, rat ANP (103-126), at concentrations of 10(-8) to 10(-6) M for 24 h, resulted in a significantly (p less than 0.01) greater decrease in maximum 125I-APIII binding to CPAE cells than the identical concentration of API, rat ANP (103-123). APIII at concentrations of 10(-8) to 10(-6) M stimulated cyclic GMP (cGMP) production 3.3-17.5-fold greater than similar concentrations of API. From these findings, we hypothesized that cGMP produced following ANP binding to the B-receptor participates in ANP receptor regulation. M&B 22948, a selective inhibitor of cGMP-specific phosphodiesterase, significantly (p less than 0.01) potentiated the effect of both API and APIII on 125I-APIII binding, while M&B 22948 itself had no significant effect on 125I-APIII binding. Treatment of the cells with 1 mM 8-bromo-cGMP also significantly (p less than 0.01) decreased 125I-APIII binding to the cells, and a potentiation of this effect was observed by M&B 22948. Scatchard analysis of binding data from 8-bromo-cGMP-treated cells showed a significant decrease in Bmax (1.79 +/- 0.15 to 1.20 +/- 0.07 fmol/mg protein, p less than 0.05) without a significant change in Kd. Affinity cross-linking of 125I-APIII to 8-bromo-cGMP-treated cells showed a decrease in the labeling of 60- and 70-kDa bands corresponding to the C-receptor. In addition, the APIII-stimulated cGMP response remained unchanged in the 8-bromo-cGMP-treated cells, indicating that the B-receptor was not down-regulated. We conclude that cGMP regulates ANP-binding sites on the endothelial cell and that the evidence indicates that the C-receptor may preferentially be down-regulated by cGMP in CPAE cells.

UI MeSH Term Description Entries
D009320 Atrial Natriuretic Factor A potent natriuretic and vasodilatory peptide or mixture of different-sized low molecular weight PEPTIDES derived from a common precursor and secreted mainly by the HEART ATRIUM. All these peptides share a sequence of about 20 AMINO ACIDS. ANF,ANP,Atrial Natriuretic Peptide,Atrial Natriuretic Peptides,Atriopeptins,Auriculin,Natriuretic Peptides, Atrial,ANF (1-126),ANF (1-28),ANF (99-126),ANF Precursors,ANP (1-126),ANP (1-28),ANP Prohormone (99-126),ANP-(99-126),Atrial Natriuretic Factor (1-126),Atrial Natriuretic Factor (1-28),Atrial Natriuretic Factor (99-126),Atrial Natriuretic Factor Precursors,Atrial Natriuretic Factor Prohormone,Atrial Natriuretic Peptide (1-126),Atrial Pronatriodilatin,Atriopeptigen,Atriopeptin (1-28),Atriopeptin (99-126),Atriopeptin 126,Atriopeptin Prohormone (1-126),Cardiodilatin (99-126),Cardiodilatin Precursor,Cardionatrin I,Cardionatrin IV,Prepro-ANP,Prepro-CDD-ANF,Prepro-Cardiodilatin-Atrial Natriuretic Factor,Pro-ANF,ProANF,Proatrial Natriuretic Factor,Pronatriodilatin,alpha ANP,alpha-ANP Dimer,alpha-Atrial Natriuretic Peptide,beta-ANP,beta-Atrial Natriuretic Peptide,gamma ANP (99-126),gamma-Atrial Natriuretic Peptide,Natriuretic Peptide, Atrial,Peptide, Atrial Natriuretic,Peptides, Atrial Natriuretic,Prepro ANP,Prepro CDD ANF,Prepro Cardiodilatin Atrial Natriuretic Factor,Pro ANF,alpha ANP Dimer,alpha Atrial Natriuretic Peptide,beta ANP,beta Atrial Natriuretic Peptide,gamma Atrial Natriuretic Peptide
D011688 Purinones Oxopurines
D011956 Receptors, Cell Surface Cell surface proteins that bind signalling molecules external to the cell with high affinity and convert this extracellular event into one or more intracellular signals that alter the behavior of the target cell (From Alberts, Molecular Biology of the Cell, 2nd ed, pp693-5). Cell surface receptors, unlike enzymes, do not chemically alter their ligands. Cell Surface Receptor,Cell Surface Receptors,Hormone Receptors, Cell Surface,Receptors, Endogenous Substances,Cell Surface Hormone Receptors,Endogenous Substances Receptors,Receptor, Cell Surface,Surface Receptor, Cell
D002417 Cattle Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor. Beef Cow,Bos grunniens,Bos indicus,Bos indicus Cattle,Bos taurus,Cow,Cow, Domestic,Dairy Cow,Holstein Cow,Indicine Cattle,Taurine Cattle,Taurus Cattle,Yak,Zebu,Beef Cows,Bos indicus Cattles,Cattle, Bos indicus,Cattle, Indicine,Cattle, Taurine,Cattle, Taurus,Cattles, Bos indicus,Cattles, Indicine,Cattles, Taurine,Cattles, Taurus,Cow, Beef,Cow, Dairy,Cow, Holstein,Cows,Dairy Cows,Domestic Cow,Domestic Cows,Indicine Cattles,Taurine Cattles,Taurus Cattles,Yaks,Zebus
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D003432 Cross-Linking Reagents Reagents with two reactive groups, usually at opposite ends of the molecule, that are capable of reacting with and thereby forming bridges between side chains of amino acids in proteins; the locations of naturally reactive areas within proteins can thereby be identified; may also be used for other macromolecules, like glycoproteins, nucleic acids, or other. Bifunctional Reagent,Bifunctional Reagents,Cross Linking Reagent,Crosslinking Reagent,Cross Linking Reagents,Crosslinking Reagents,Linking Reagent, Cross,Linking Reagents, Cross,Reagent, Bifunctional,Reagent, Cross Linking,Reagent, Crosslinking,Reagents, Bifunctional,Reagents, Cross Linking,Reagents, Cross-Linking,Reagents, Crosslinking
D004591 Electrophoresis, Polyacrylamide Gel Electrophoresis in which a polyacrylamide gel is used as the diffusion medium. Polyacrylamide Gel Electrophoresis,SDS-PAGE,Sodium Dodecyl Sulfate-PAGE,Gel Electrophoresis, Polyacrylamide,SDS PAGE,Sodium Dodecyl Sulfate PAGE,Sodium Dodecyl Sulfate-PAGEs
D004730 Endothelium, Vascular Single pavement layer of cells which line the luminal surface of the entire vascular system and regulate the transport of macromolecules and blood components. Capillary Endothelium,Vascular Endothelium,Capillary Endotheliums,Endothelium, Capillary,Endotheliums, Capillary,Endotheliums, Vascular,Vascular Endotheliums
D006152 Cyclic GMP Guanosine cyclic 3',5'-(hydrogen phosphate). A guanine nucleotide containing one phosphate group which is esterified to the sugar moiety in both the 3'- and 5'-positions. It is a cellular regulatory agent and has been described as a second messenger. Its levels increase in response to a variety of hormones, including acetylcholine, insulin, and oxytocin and it has been found to activate specific protein kinases. (From Merck Index, 11th ed) Guanosine Cyclic 3',5'-Monophosphate,Guanosine Cyclic 3,5 Monophosphate,Guanosine Cyclic Monophosphate,Guanosine Cyclic-3',5'-Monophosphate,3',5'-Monophosphate, Guanosine Cyclic,Cyclic 3',5'-Monophosphate, Guanosine,Cyclic Monophosphate, Guanosine,Cyclic-3',5'-Monophosphate, Guanosine,GMP, Cyclic,Guanosine Cyclic 3',5' Monophosphate,Monophosphate, Guanosine Cyclic
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

J Kato, and K L Lanier-Smith, and M G Currie
March 1987, European journal of pharmacology,
J Kato, and K L Lanier-Smith, and M G Currie
September 1994, Journal of cardiovascular pharmacology,
J Kato, and K L Lanier-Smith, and M G Currie
November 1991, Endocrinology,
J Kato, and K L Lanier-Smith, and M G Currie
April 1990, Biochemical and biophysical research communications,
J Kato, and K L Lanier-Smith, and M G Currie
August 1986, FEBS letters,
J Kato, and K L Lanier-Smith, and M G Currie
January 1987, Indian journal of experimental biology,
Copied contents to your clipboard!