Inhibition in postischemic rat hippocampus: GABA receptors, GABA release, and inhibitory postsynaptic potentials. 1991

F F Johansen, and T Christensen, and M S Jensen, and E Valente, and C V Jensen, and T Nathan, and J D Lambert, and N H Diemer
PharmaBiotec Research Center, University of Copenhagen, Denmark.

We have investigated the GABAergic system in rat hippocampus at 1 hour and up to 21 days following 20 min of global cerebral ischemia. Distribution of 3H-GABA (in excess of unlabeled baclofen) and 3H-Ro-15-1788 (benzodiazepine antagonist) binding sites in hippocampus was studied utilizing quantitative autoradiography. The 3H-GABA binding was unchanged (p greater than 0.01) after ischemia, whereas the 3H-Ro-15-1788 binding decreased significantly (p less than 0.01) in all hippocampal subfields 1-21 days after ischemia. Using microdialysis in CA1, we found that K(+)-stimulated GABA release at 1 hour and 1 day after ischemia was unchanged (p greater than 0.01) in comparison to preischemic controls. Electrophysiological recordings were made from CA1 of hippocampal slices prepared from rats sacrificed 1 hour, 1 day and 2 days after ischemia. Field potentials evoked by stimulation of the Schaffer collaterals showed no differences (p greater than 0.01) from those taken from controls. Postischemic intracellular recordings from the CA1 pyramidal cells showed that fast and slow inhibitory postsynaptic potentials were readily evoked on orthodromic stimulation. Together with our previous morphological results, demonstrating survival of hippocampal interneurons following ischemia, we conclude that hippocampal GABAergic interneurons preserve their inhibitory potential in the period preceding delayed CA1 pyramidal cell death. This conclusion taken together with the observation that postischemic 3H-Ro-15-1788 binding in hippocampus declined, suggest that benzodiazepines (by increasing the receptor affinity), GABA analogs, and GABA uptake inhibitors may be useful in the treatment of ischemic CA1 pyramidal cell death in the rat.

UI MeSH Term Description Entries
D008297 Male Males
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D011712 Pyramidal Tracts Fibers that arise from cells within the cerebral cortex, pass through the medullary pyramid, and descend in the spinal cord. Many authorities say the pyramidal tracts include both the corticospinal and corticobulbar tracts. Corticobulbar Tracts,Corticospinal Tracts,Decussation, Pyramidal,Corticobulbar Tract,Corticospinal Tract,Pyramidal Decussation,Pyramidal Tract,Tract, Corticobulbar,Tract, Corticospinal,Tract, Pyramidal,Tracts, Corticobulbar,Tracts, Corticospinal,Tracts, Pyramidal
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D011963 Receptors, GABA-A Cell surface proteins which bind GAMMA-AMINOBUTYRIC ACID and contain an integral membrane chloride channel. Each receptor is assembled as a pentamer from a pool of at least 19 different possible subunits. The receptors belong to a superfamily that share a common CYSTEINE loop. Benzodiazepine-Gaba Receptors,GABA-A Receptors,Receptors, Benzodiazepine,Receptors, Benzodiazepine-GABA,Receptors, Diazepam,Receptors, GABA-Benzodiazepine,Receptors, Muscimol,Benzodiazepine Receptor,Benzodiazepine Receptors,Benzodiazepine-GABA Receptor,Diazepam Receptor,Diazepam Receptors,GABA(A) Receptor,GABA-A Receptor,GABA-A Receptor alpha Subunit,GABA-A Receptor beta Subunit,GABA-A Receptor delta Subunit,GABA-A Receptor epsilon Subunit,GABA-A Receptor gamma Subunit,GABA-A Receptor rho Subunit,GABA-Benzodiazepine Receptor,GABA-Benzodiazepine Receptors,Muscimol Receptor,Muscimol Receptors,delta Subunit, GABA-A Receptor,epsilon Subunit, GABA-A Receptor,gamma-Aminobutyric Acid Subtype A Receptors,Benzodiazepine GABA Receptor,Benzodiazepine Gaba Receptors,GABA A Receptor,GABA A Receptor alpha Subunit,GABA A Receptor beta Subunit,GABA A Receptor delta Subunit,GABA A Receptor epsilon Subunit,GABA A Receptor gamma Subunit,GABA A Receptor rho Subunit,GABA A Receptors,GABA Benzodiazepine Receptor,GABA Benzodiazepine Receptors,Receptor, Benzodiazepine,Receptor, Benzodiazepine-GABA,Receptor, Diazepam,Receptor, GABA-A,Receptor, GABA-Benzodiazepine,Receptor, Muscimol,Receptors, Benzodiazepine GABA,Receptors, GABA A,Receptors, GABA Benzodiazepine,delta Subunit, GABA A Receptor,epsilon Subunit, GABA A Receptor,gamma Aminobutyric Acid Subtype A Receptors
D002545 Brain Ischemia Localized reduction of blood flow to brain tissue due to arterial obstruction or systemic hypoperfusion. This frequently occurs in conjunction with brain hypoxia (HYPOXIA, BRAIN). Prolonged ischemia is associated with BRAIN INFARCTION. Cerebral Ischemia,Ischemic Encephalopathy,Encephalopathy, Ischemic,Ischemia, Cerebral,Brain Ischemias,Cerebral Ischemias,Ischemia, Brain,Ischemias, Cerebral,Ischemic Encephalopathies
D003956 Dialysis A process of selective diffusion through a membrane. It is usually used to separate low-molecular-weight solutes which diffuse through the membrane from the colloidal and high-molecular-weight solutes which do not. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Dialyses
D004594 Electrophysiology The study of the generation and behavior of electrical charges in living organisms particularly the nervous system and the effects of electricity on living organisms.
D005442 Flumazenil A potent benzodiazepine receptor antagonist. Since it reverses the sedative and other actions of benzodiazepines, it has been suggested as an antidote to benzodiazepine overdoses. Flumazepil,Anexate,Lanexat,Ro 15-1788,Romazicon,Ro 15 1788,Ro 151788
D005680 gamma-Aminobutyric Acid The most common inhibitory neurotransmitter in the central nervous system. 4-Aminobutyric Acid,GABA,4-Aminobutanoic Acid,Aminalon,Aminalone,Gammalon,Lithium GABA,gamma-Aminobutyric Acid, Calcium Salt (2:1),gamma-Aminobutyric Acid, Hydrochloride,gamma-Aminobutyric Acid, Monolithium Salt,gamma-Aminobutyric Acid, Monosodium Salt,gamma-Aminobutyric Acid, Zinc Salt (2:1),4 Aminobutanoic Acid,4 Aminobutyric Acid,Acid, Hydrochloride gamma-Aminobutyric,GABA, Lithium,Hydrochloride gamma-Aminobutyric Acid,gamma Aminobutyric Acid,gamma Aminobutyric Acid, Hydrochloride,gamma Aminobutyric Acid, Monolithium Salt,gamma Aminobutyric Acid, Monosodium Salt

Related Publications

F F Johansen, and T Christensen, and M S Jensen, and E Valente, and C V Jensen, and T Nathan, and J D Lambert, and N H Diemer
January 2017, Frontiers in cellular neuroscience,
F F Johansen, and T Christensen, and M S Jensen, and E Valente, and C V Jensen, and T Nathan, and J D Lambert, and N H Diemer
December 2002, Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology,
F F Johansen, and T Christensen, and M S Jensen, and E Valente, and C V Jensen, and T Nathan, and J D Lambert, and N H Diemer
January 2002, Journal of neurophysiology,
F F Johansen, and T Christensen, and M S Jensen, and E Valente, and C V Jensen, and T Nathan, and J D Lambert, and N H Diemer
May 1990, The Journal of physiology,
F F Johansen, and T Christensen, and M S Jensen, and E Valente, and C V Jensen, and T Nathan, and J D Lambert, and N H Diemer
December 2002, Journal of neurophysiology,
F F Johansen, and T Christensen, and M S Jensen, and E Valente, and C V Jensen, and T Nathan, and J D Lambert, and N H Diemer
January 1998, Neuroscience,
F F Johansen, and T Christensen, and M S Jensen, and E Valente, and C V Jensen, and T Nathan, and J D Lambert, and N H Diemer
August 1999, Brain research,
F F Johansen, and T Christensen, and M S Jensen, and E Valente, and C V Jensen, and T Nathan, and J D Lambert, and N H Diemer
February 1989, Experientia,
F F Johansen, and T Christensen, and M S Jensen, and E Valente, and C V Jensen, and T Nathan, and J D Lambert, and N H Diemer
December 1998, British journal of pharmacology,
F F Johansen, and T Christensen, and M S Jensen, and E Valente, and C V Jensen, and T Nathan, and J D Lambert, and N H Diemer
March 2003, Biochemical and biophysical research communications,
Copied contents to your clipboard!