Intracellular adaptations of glutathione content in Cucurbita pepo L. induced by treatment with reduced glutathione and buthionine sulfoximine. 2006

B Zechmann, and M Müller, and G Zellnig
Institute of Plant Sciences, University of Graz, Graz, Austria.

The intracellular effects of GSH (reduced glutathione) and BSO (buthionine sulfoximine) treatment on glutathione content were investigated with immunogold labeling in individual cellular compartments of Cucurbita pepo L. seedlings. Generally, GSH treatment led to increased levels of glutathione in roots and leaves (up to 3.5-fold in nuclei), whereas BSO treatment significantly decreased glutathione content in all organs. Transmission electron microscopy revealed that glutathione levels in mitochondria, which showed the highest glutathione labeling density of all compartments, remained generally unaffected by both treatments. Since glutathione within mitochondria is involved in the regulation of cell death, these results indicate that high and stable levels of glutathione in mitochondria play an important role in cell survival strategies. BSO treatment significantly decreased glutathione levels (1) in roots by about 78% in plastids and 60.8% in the cytosol and (2) in cotyledons by about 55% in the cytosol and 38.6% in plastids. After a short recovery period, glutathione levels were significantly increased in plastids and the cytosol of root tip cells (up to 3.7-fold) and back to control values in cotyledons. These results indicate that plastids, either alone or together with the cytosol, are the main center of glutathione synthesis in leaves as well as in roots. After GSH treatment for 24 h, severe ultrastructural damage related to increased levels of glutathione was found in roots, in all organelles except mitochondria. Possible negative effects of GSH treatment leading to the observed ultrastructural damage are discussed.

UI MeSH Term Description Entries
D007150 Immunohistochemistry Histochemical localization of immunoreactive substances using labeled antibodies as reagents. Immunocytochemistry,Immunogold Techniques,Immunogold-Silver Techniques,Immunohistocytochemistry,Immunolabeling Techniques,Immunogold Technics,Immunogold-Silver Technics,Immunolabeling Technics,Immunogold Silver Technics,Immunogold Silver Techniques,Immunogold Technic,Immunogold Technique,Immunogold-Silver Technic,Immunogold-Silver Technique,Immunolabeling Technic,Immunolabeling Technique,Technic, Immunogold,Technic, Immunogold-Silver,Technic, Immunolabeling,Technics, Immunogold,Technics, Immunogold-Silver,Technics, Immunolabeling,Technique, Immunogold,Technique, Immunogold-Silver,Technique, Immunolabeling,Techniques, Immunogold,Techniques, Immunogold-Silver,Techniques, Immunolabeling
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D010084 Oxidation-Reduction A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471). Redox,Oxidation Reduction
D005978 Glutathione A tripeptide with many roles in cells. It conjugates to drugs to make them more soluble for excretion, is a cofactor for some enzymes, is involved in protein disulfide bond rearrangement and reduces peroxides. Reduced Glutathione,gamma-L-Glu-L-Cys-Gly,gamma-L-Glutamyl-L-Cysteinylglycine,Glutathione, Reduced,gamma L Glu L Cys Gly,gamma L Glutamyl L Cysteinylglycine
D000222 Adaptation, Physiological The non-genetic biological changes of an organism in response to challenges in its ENVIRONMENT. Adaptation, Physiologic,Adaptations, Physiologic,Adaptations, Physiological,Adaptive Plasticity,Phenotypic Plasticity,Physiological Adaptation,Physiologic Adaptation,Physiologic Adaptations,Physiological Adaptations,Plasticity, Adaptive,Plasticity, Phenotypic
D018515 Plant Leaves Expanded structures, usually green, of vascular plants, characteristically consisting of a bladelike expansion attached to a stem, and functioning as the principal organ of photosynthesis and transpiration. (American Heritage Dictionary, 2d ed) Plant Leaf,Leaf, Plant,Leave, Plant,Leaves, Plant,Plant Leave
D018519 Meristem A group of plant cells that are capable of dividing infinitely and whose main function is the production of new growth at the growing tip of a root or stem. (From Concise Dictionary of Biology, 1990) Root Tip,Meristems,Root Tips,Tip, Root,Tips, Root
D019328 Buthionine Sulfoximine A synthetic amino acid that depletes glutathione by irreversibly inhibiting gamma-glutamylcysteine synthetase. Inhibition of this enzyme is a critical step in glutathione biosynthesis. It has been shown to inhibit the proliferative response in human T-lymphocytes and inhibit macrophage activation. (J Biol Chem 1995;270(33):1945-7) Sulfoximine, Buthionine
D028464 Cucurbita A plant genus of the family CUCURBITACEAE, order Violales, subclass Dilleniidae, which includes pumpkin, gourd and squash. Pumpkins,Squash Plant,Squashes,Cucurbitas,Plant, Squash,Plants, Squash,Pumpkin,Squash Plants,Squashe
D036226 Seedlings Young plants produced at the completion of GERMINATION of SEEDS. Seedling,Malted Grain,Sprouted Seeds,Sprouts, Plant,Grain, Malted,Grains, Malted,Malted Grains,Plant Sprout,Plant Sprouts,Seed, Sprouted,Seeds, Sprouted,Sprout, Plant,Sprouted Seed

Related Publications

B Zechmann, and M Müller, and G Zellnig
May 1993, Cancer research,
B Zechmann, and M Müller, and G Zellnig
May 1988, Journal of neurochemistry,
B Zechmann, and M Müller, and G Zellnig
September 1984, Biochemical and biophysical research communications,
B Zechmann, and M Müller, and G Zellnig
January 1988, NCI monographs : a publication of the National Cancer Institute,
B Zechmann, and M Müller, and G Zellnig
June 2012, American journal of hypertension,
B Zechmann, and M Müller, and G Zellnig
January 1992, The American journal of physiology,
B Zechmann, and M Müller, and G Zellnig
May 1994, International journal of radiation oncology, biology, physics,
B Zechmann, and M Müller, and G Zellnig
February 1991, Research communications in chemical pathology and pharmacology,
B Zechmann, and M Müller, and G Zellnig
October 1985, Fundamental and applied toxicology : official journal of the Society of Toxicology,
Copied contents to your clipboard!