A quantitative description of tetanic and post-tetanic potentiation of transmitter release at the frog neuromuscular junction. 1975

K L Magleby, and J E Zengel

1. End-plate potential (e.p.p.s) were recorded with a surface electrode from frog neuromuscular junctions blocked with high Mg and low Ca to study post-tetanic potentiation (potentiation). 2. The magnitude of potentiation was not directly related to the number of conditioning impulses, but was a function of the frequency and duration of the conditioning stimulation. 3. Potentiation was always greater following an equal number of impulses delivered at a higher frequency of stimulation. 4. Plots of the magnitude of potentiation against the number of conditioning impulses would sometimes show an upward inflexion depending on the parameters of stimulation. 5. These experimental observations were described by a model based on the assumption (1) that potentiation is linearly related to a residual substance, R(t), which accumulates in the nerve terminal during repetitive stimulation, and (2) that each nerve impulse adds an identical increment, r, of this residual substance. The data were not described by assuming a 4th power relationship between potentiation and R(t). 6. The upward inflexion in potentiation (see paragraph 4) is described by the model as resulting from an increase in the time constant for the decay of potentiation as the magnitude of potentiation increases. 7. The increment of residual substance r added by each impulse was independent of the amount of transmitter released during the conditioning train. This increment typically increased transmitter release by amount 1% of the control level in the absence of potentiation. 8. Suggestions are given to explain why potentiation of transmitter release, which is thought to arise from an accumulation of Ca-2+ in the nerve terminal, can be described assuming a linear relationship between potentiation and R(t), the proposed substance responsible for potentiation, under experimental conditions in which a 3rd to 4th power relationship would be expected to exist between external Ca concentration and evoked transmitter release.

UI MeSH Term Description Entries
D008274 Magnesium A metallic element that has the atomic symbol Mg, atomic number 12, and atomic weight 24.31. It is important for the activity of many enzymes, especially those involved in OXIDATIVE PHOSPHORYLATION.
D008954 Models, Biological Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment. Biological Model,Biological Models,Model, Biological,Models, Biologic,Biologic Model,Biologic Models,Model, Biologic
D009045 Motor Endplate The specialized postsynaptic region of a muscle cell. The motor endplate is immediately across the synaptic cleft from the presynaptic axon terminal. Among its anatomical specializations are junctional folds which harbor a high density of cholinergic receptors. Motor End-Plate,End-Plate, Motor,End-Plates, Motor,Endplate, Motor,Endplates, Motor,Motor End Plate,Motor End-Plates,Motor Endplates
D009119 Muscle Contraction A process leading to shortening and/or development of tension in muscle tissue. Muscle contraction occurs by a sliding filament mechanism whereby actin filaments slide inward among the myosin filaments. Inotropism,Muscular Contraction,Contraction, Muscle,Contraction, Muscular,Contractions, Muscle,Contractions, Muscular,Inotropisms,Muscle Contractions,Muscular Contractions
D009435 Synaptic Transmission The communication from a NEURON to a target (neuron, muscle, or secretory cell) across a SYNAPSE. In chemical synaptic transmission, the presynaptic neuron releases a NEUROTRANSMITTER that diffuses across the synaptic cleft and binds to specific synaptic receptors, activating them. The activated receptors modulate specific ion channels and/or second-messenger systems in the postsynaptic cell. In electrical synaptic transmission, electrical signals are communicated as an ionic current flow across ELECTRICAL SYNAPSES. Neural Transmission,Neurotransmission,Transmission, Neural,Transmission, Synaptic
D009469 Neuromuscular Junction The synapse between a neuron and a muscle. Myoneural Junction,Nerve-Muscle Preparation,Junction, Myoneural,Junction, Neuromuscular,Junctions, Myoneural,Junctions, Neuromuscular,Myoneural Junctions,Nerve Muscle Preparation,Nerve-Muscle Preparations,Neuromuscular Junctions,Preparation, Nerve-Muscle,Preparations, Nerve-Muscle
D011894 Rana pipiens A highly variable species of the family Ranidae in Canada, the United States and Central America. It is the most widely used Anuran in biomedical research. Frog, Leopard,Leopard Frog,Lithobates pipiens,Frogs, Leopard,Leopard Frogs
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D004558 Electric Stimulation Use of electric potential or currents to elicit biological responses. Stimulation, Electric,Electrical Stimulation,Electric Stimulations,Electrical Stimulations,Stimulation, Electrical,Stimulations, Electric,Stimulations, Electrical
D004594 Electrophysiology The study of the generation and behavior of electrical charges in living organisms particularly the nervous system and the effects of electricity on living organisms.

Related Publications

K L Magleby, and J E Zengel
July 1969, The Journal of physiology,
K L Magleby, and J E Zengel
January 1971, The Journal of physiology,
K L Magleby, and J E Zengel
May 1981, Brain research,
K L Magleby, and J E Zengel
January 1983, Proceedings of the National Academy of Sciences of the United States of America,
K L Magleby, and J E Zengel
February 1988, The Journal of physiology,
K L Magleby, and J E Zengel
January 1973, The Journal of physiology,
K L Magleby, and J E Zengel
May 1973, British journal of pharmacology,
Copied contents to your clipboard!