Interactions of the cellular CCAAT displacement protein and human papillomavirus E2 protein with the viral origin of replication can regulate DNA replication. 2006

Janaki Narahari, and John C Fisk, and Thomas Melendy, and Ann Roman
Department of Microbiology and Immunology, Indiana University School of Medicine and Walther Cancer Institute, Indianapolis, IN 46202, USA. jnarahar@iupui.edu

Previously, we and others have shown that CCAAT displacement protein (CDP) negatively regulates the papillomavirus promoters. Overexpression of CDP has been shown to inhibit high-risk human papillomavirus virus (HPV) and bovine papillomavirus DNA replication in vivo presumably through reduction in expression of viral replication proteins, E1 and E2. Sequence analysis of the HPV origin indicates several potential CDP-binding sites with one site overlapping the E1-binding site. Therefore, CDP could also negatively regulate papillomavirus replication directly by preventing the loading of the initiation complex. We show here that purified CDP inhibits in vitro HPV DNA replication. Footprint analysis demonstrated that CDP binds the E1-binding site and the TATA box, and that the binding of purified CDP to the E1-binding site is decreased by the addition of purified E2 protein. Consistent with this, E2-independent in vitro HPV replication is inhibited by CDP to a greater extent than E2-dependent replication. These results suggest that binding of E2 at the E2-binding site may play an important role in overcoming the inhibition of E1 initiation complex formation caused by the binding of negative regulators like CDP to the origin of replication.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009687 Nuclear Proteins Proteins found in the nucleus of a cell. Do not confuse with NUCLEOPROTEINS which are proteins conjugated with nucleic acids, that are not necessarily present in the nucleus. Nucleolar Protein,Nucleolar Proteins,Nuclear Protein,Protein, Nuclear,Protein, Nucleolar,Proteins, Nuclear,Proteins, Nucleolar
D012097 Repressor Proteins Proteins which maintain the transcriptional quiescence of specific GENES or OPERONS. Classical repressor proteins are DNA-binding proteins that are normally bound to the OPERATOR REGION of an operon, or the ENHANCER SEQUENCES of a gene until a signal occurs that causes their release. Repressor Molecules,Transcriptional Silencing Factors,Proteins, Repressor,Silencing Factors, Transcriptional
D003850 Deoxyribonuclease I An enzyme capable of hydrolyzing highly polymerized DNA by splitting phosphodiester linkages, preferentially adjacent to a pyrimidine nucleotide. This catalyzes endonucleolytic cleavage of DNA yielding 5'-phosphodi- and oligonucleotide end-products. The enzyme has a preference for double-stranded DNA. DNase I,Streptodornase,DNA Endonuclease,DNA Nicking Enzyme,DNAase I,Dornavac,Endonuclease I,Nickase,Pancreatic DNase,T4-Endonuclease II,T7-Endonuclease I,Thymonuclease,DNase, Pancreatic,Endonuclease, DNA,T4 Endonuclease II,T7 Endonuclease I
D004261 DNA Replication The process by which a DNA molecule is duplicated. Autonomous Replication,Replication, Autonomous,Autonomous Replications,DNA Replications,Replication, DNA,Replications, Autonomous,Replications, DNA
D004268 DNA-Binding Proteins Proteins which bind to DNA. The family includes proteins which bind to both double- and single-stranded DNA and also includes specific DNA binding proteins in serum which can be used as markers for malignant diseases. DNA Helix Destabilizing Proteins,DNA-Binding Protein,Single-Stranded DNA Binding Proteins,DNA Binding Protein,DNA Single-Stranded Binding Protein,SS DNA BP,Single-Stranded DNA-Binding Protein,Binding Protein, DNA,DNA Binding Proteins,DNA Single Stranded Binding Protein,DNA-Binding Protein, Single-Stranded,Protein, DNA-Binding,Single Stranded DNA Binding Protein,Single Stranded DNA Binding Proteins
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D001665 Binding Sites The parts of a macromolecule that directly participate in its specific combination with another molecule. Combining Site,Binding Site,Combining Sites,Site, Binding,Site, Combining,Sites, Binding,Sites, Combining
D012689 Sequence Homology, Nucleic Acid The sequential correspondence of nucleotides in one nucleic acid molecule with those of another nucleic acid molecule. Sequence homology is an indication of the genetic relatedness of different organisms and gene function. Base Sequence Homology,Homologous Sequences, Nucleic Acid,Homologs, Nucleic Acid Sequence,Homology, Base Sequence,Homology, Nucleic Acid Sequence,Nucleic Acid Sequence Homologs,Nucleic Acid Sequence Homology,Sequence Homology, Base,Base Sequence Homologies,Homologies, Base Sequence,Sequence Homologies, Base

Related Publications

Janaki Narahari, and John C Fisk, and Thomas Melendy, and Ann Roman
May 2023, International journal of molecular sciences,
Janaki Narahari, and John C Fisk, and Thomas Melendy, and Ann Roman
January 2008, Virology journal,
Janaki Narahari, and John C Fisk, and Thomas Melendy, and Ann Roman
March 2017, Journal of virology,
Janaki Narahari, and John C Fisk, and Thomas Melendy, and Ann Roman
March 2023, International journal of molecular sciences,
Janaki Narahari, and John C Fisk, and Thomas Melendy, and Ann Roman
August 2001, Virology,
Janaki Narahari, and John C Fisk, and Thomas Melendy, and Ann Roman
January 1999, The Journal of biological chemistry,
Janaki Narahari, and John C Fisk, and Thomas Melendy, and Ann Roman
September 1994, The Journal of biological chemistry,
Janaki Narahari, and John C Fisk, and Thomas Melendy, and Ann Roman
March 2017, Virus research,
Copied contents to your clipboard!