Characterisation of 'fast' and 'slow' forms of bovine heart cytochrome-c oxidase. 1991

A J Moody, and C E Cooper, and P R Rich
Glynn Research Institute, Bodmin, U.K.

We have prepared cytochrome-c oxidase from bovine heart (using a modification of the method of Kuboyama et al. (1972) J. Biol. Chem. 247, 6375-6383) which binds cyanide rapidly, shows no kinetic distinction between the two haems on reduction by dithionite, has a Soret absorption maximum above 424 nm, and has a negligible 'g' = 12' EPR signal. On incubation at pH 6.5 this 'fast' oxidase reverts to the 'slow' ('resting') form characterised by slow cyanide binding, slow reduction of haem a3 by dithionite, a blue-shifted Soret maximum and a large 'g' = 12' signal. Incubation of 'fast' oxidase with formate produces a form of the enzyme with properties almost identical to those of 'slow' oxidase. The kinetics of formate binding to 'fast' oxidase are found to be biphasic, revealing the presence of at least two 'fast' subpopulations in our preparations. Evidence is presented that there is an equilibrium mixture of high-spin and low-spin forms of haem a3 in both 'fast' subpopulations at room temperature. Incubation of 'fast' oxidase with chloride or bromide at pH 6.5 produces forms of oxidase with much lower rates of cyanide binding. Our working hypothesis is that formate mimics a binuclear centre ligand which is present in the 'slow' form of cytochrome oxidase. Although we show that chloride and bromide can also be ligands of the binuclear centre, possibly onto CuB, we can rule out either of these being the ligand present in the 'slow' enzyme. We will argue that the 'fast' and 'slow' forms of oxidase are equivalent to the 'pulsed' and 'resting' forms of oxidase, respectively.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D009206 Myocardium The muscle tissue of the HEART. It is composed of striated, involuntary muscle cells (MYOCYTES, CARDIAC) connected to form the contractile pump to generate blood flow. Muscle, Cardiac,Muscle, Heart,Cardiac Muscle,Myocardia,Cardiac Muscles,Heart Muscle,Heart Muscles,Muscles, Cardiac,Muscles, Heart
D001965 Bromides Salts of hydrobromic acid, HBr, with the bromine atom in the 1- oxidation state. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Bromide
D002417 Cattle Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor. Beef Cow,Bos grunniens,Bos indicus,Bos indicus Cattle,Bos taurus,Cow,Cow, Domestic,Dairy Cow,Holstein Cow,Indicine Cattle,Taurine Cattle,Taurus Cattle,Yak,Zebu,Beef Cows,Bos indicus Cattles,Cattle, Bos indicus,Cattle, Indicine,Cattle, Taurine,Cattle, Taurus,Cattles, Bos indicus,Cattles, Indicine,Cattles, Taurine,Cattles, Taurus,Cow, Beef,Cow, Dairy,Cow, Holstein,Cows,Dairy Cows,Domestic Cow,Domestic Cows,Indicine Cattles,Taurine Cattles,Taurus Cattles,Yaks,Zebus
D002712 Chlorides Inorganic compounds derived from hydrochloric acid that contain the Cl- ion. Chloride,Chloride Ion Level,Ion Level, Chloride,Level, Chloride Ion
D003486 Cyanides Inorganic salts of HYDROGEN CYANIDE containing the -CN radical. The concept also includes isocyanides. It is distinguished from NITRILES, which denotes organic compounds containing the -CN radical. Cyanide,Isocyanide,Isocyanides
D003576 Electron Transport Complex IV A multisubunit enzyme complex containing CYTOCHROME A GROUP; CYTOCHROME A3; two copper atoms; and 13 different protein subunits. It is the terminal oxidase complex of the RESPIRATORY CHAIN and collects electrons that are transferred from the reduced CYTOCHROME C GROUP and donates them to molecular OXYGEN, which is then reduced to water. The redox reaction is simultaneously coupled to the transport of PROTONS across the inner mitochondrial membrane. Cytochrome Oxidase,Cytochrome aa3,Cytochrome-c Oxidase,Cytochrome Oxidase Subunit III,Cytochrome a,a3,Cytochrome c Oxidase Subunit VIa,Cytochrome-c Oxidase (Complex IV),Cytochrome-c Oxidase Subunit III,Cytochrome-c Oxidase Subunit IV,Ferrocytochrome c Oxygen Oxidoreductase,Heme aa3 Cytochrome Oxidase,Pre-CTOX p25,Signal Peptide p25-Subunit IV Cytochrome Oxidase,Subunit III, Cytochrome Oxidase,p25 Presequence Peptide-Cytochrome Oxidase,Cytochrome c Oxidase,Cytochrome c Oxidase Subunit III,Cytochrome c Oxidase Subunit IV,Oxidase, Cytochrome,Oxidase, Cytochrome-c,Signal Peptide p25 Subunit IV Cytochrome Oxidase,p25 Presequence Peptide Cytochrome Oxidase
D004227 Dithionite Dithionite. The dithionous acid ion and its salts. Hyposulfite,Sodium Dithionite,Dithionite, Sodium
D004578 Electron Spin Resonance Spectroscopy A technique applicable to the wide variety of substances which exhibit paramagnetism because of the magnetic moments of unpaired electrons. The spectra are useful for detection and identification, for determination of electron structure, for study of interactions between molecules, and for measurement of nuclear spins and moments. (From McGraw-Hill Encyclopedia of Science and Technology, 7th edition) Electron nuclear double resonance (ENDOR) spectroscopy is a variant of the technique which can give enhanced resolution. Electron spin resonance analysis can now be used in vivo, including imaging applications such as MAGNETIC RESONANCE IMAGING. ENDOR,Electron Nuclear Double Resonance,Electron Paramagnetic Resonance,Paramagnetic Resonance,Electron Spin Resonance,Paramagnetic Resonance, Electron,Resonance, Electron Paramagnetic,Resonance, Electron Spin,Resonance, Paramagnetic
D005561 Formates Derivatives of formic acids. Included under this heading are a broad variety of acid forms, salts, esters, and amides that are formed with a single carbon carboxy group. Formic Acids,Acids, Formic

Related Publications

A J Moody, and C E Cooper, and P R Rich
January 2000, Sub-cellular biochemistry,
A J Moody, and C E Cooper, and P R Rich
August 1993, Biochemistry,
A J Moody, and C E Cooper, and P R Rich
November 1991, FEBS letters,
A J Moody, and C E Cooper, and P R Rich
January 1988, Annals of the New York Academy of Sciences,
A J Moody, and C E Cooper, and P R Rich
June 1977, Journal of bioenergetics and biomembranes,
A J Moody, and C E Cooper, and P R Rich
January 2006, Biochimica et biophysica acta,
A J Moody, and C E Cooper, and P R Rich
November 1974, Biochemical and biophysical research communications,
A J Moody, and C E Cooper, and P R Rich
April 2012, Biochimica et biophysica acta,
A J Moody, and C E Cooper, and P R Rich
October 1981, European journal of biochemistry,
A J Moody, and C E Cooper, and P R Rich
January 2006, Biochimica et biophysica acta,
Copied contents to your clipboard!