Brain-derived neurotrophic factor augments peristalsis by augmenting 5-HT and calcitonin gene-related peptide release. 2006

John R Grider, and Barbara E Piland, and Melisa A Gulick, and Li Ya Qiao
Departments of Physiology and Internal Medicine, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, Virginia, USA. jgirder@hsc.vcu.edu

OBJECTIVE Brain-derived neurotrophic factor (BDNF) acts rapidly to modulate synaptic neurotransmission in the brain. Although present in neurons, glial cells, and mucosal cells of the colon, and in higher concentrations than in brain, the action of BDNF in gut have not been characterized. The aim of this study was to identify the role of BDNF in mediating the peristaltic reflex. METHODS BDNF and a specific antiserum were examined for their effects on the peristaltic reflex and release of the sensory mediators serotonin and calcitonin gene-related peptide in rat colon. The peristaltic reflex and release of serotonin and calcitonin gene-related peptide were also examined in genetically modified mice (BDNF(+/-)) with reduced levels of BDNF. RESULTS Endogenous brain-derived neurotrophic factor was released into the sensory compartment in a stimulus-dependent manner during the peristaltic reflex induced by mucosal stimulation but not muscle stretch. BDNF stimulated and immunoneutralization of endogenous BDNF reduced ascending contraction and descending relaxation of circular muscle and release of serotonin and calcitonin gene-related peptide during the peristaltic reflex induced by mucosal stimulation but not muscle stretch. The peristaltic reflex and release of serotonin and calcitonin gene-related peptide during the peristaltic reflex induced by mucosal stimulation but not muscle stretch were significantly reduced in BDNF(+/-) mice. CONCLUSIONS Endogenous BDNF enhances the peristaltic reflex by augmenting the release of serotonin and calcitonin gene-related peptide that mediate the sensory limb of the reflex induced by mucosal stimulation.

UI MeSH Term Description Entries
D010528 Peristalsis A movement, caused by sequential muscle contraction, that pushes the contents of the intestines or other tubular organs in one direction. Peristalses
D012018 Reflex An involuntary movement or exercise of function in a part, excited in response to a stimulus applied to the periphery and transmitted to the brain or spinal cord.
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012701 Serotonin A biochemical messenger and regulator, synthesized from the essential amino acid L-TRYPTOPHAN. In humans it is found primarily in the central nervous system, gastrointestinal tract, and blood platelets. Serotonin mediates several important physiological functions including neurotransmission, gastrointestinal motility, hemostasis, and cardiovascular integrity. Multiple receptor families (RECEPTORS, SEROTONIN) explain the broad physiological actions and distribution of this biochemical mediator. 5-HT,5-Hydroxytryptamine,3-(2-Aminoethyl)-1H-indol-5-ol,Enteramine,Hippophaine,Hydroxytryptamine,5 Hydroxytryptamine
D015740 Calcitonin Gene-Related Peptide A 37-amino acid peptide derived from the calcitonin gene. It occurs as a result of alternative processing of mRNA from the calcitonin gene. The neuropeptide is widely distributed in the brain, gut, perivascular nerves, and other tissue. The peptide produces multiple biological effects and has both circulatory and neurotransmitter modes of action. In particular, it is a potent endogenous vasodilator. Calcitonin Gene-Related Peptide I,Calcitonin Gene-Related Peptide II,alpha-CGRP,alpha-Calcitonin Gene-Related Peptide,beta-CGRP,beta-Calcitonin Gene-Related Peptide,Calcitonin Gene Related Peptide,Calcitonin Gene Related Peptide I,Calcitonin Gene Related Peptide II,Gene-Related Peptide, Calcitonin,alpha Calcitonin Gene Related Peptide,beta Calcitonin Gene Related Peptide
D051379 Mice The common name for the genus Mus. Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus
D019208 Brain-Derived Neurotrophic Factor A member of the nerve growth factor family of trophic factors. In the brain BDNF has a trophic action on retinal, cholinergic, and dopaminergic neurons, and in the peripheral nervous system it acts on both motor and sensory neurons. (From Kendrew, The Encyclopedia of Molecular Biology, 1994) BDNF,Brain Derived Neurotrophic Factor,Factor, Brain-Derived Neurotrophic,Neurotrophic Factor, Brain-Derived

Related Publications

John R Grider, and Barbara E Piland, and Melisa A Gulick, and Li Ya Qiao
December 2006, Journal of neurochemistry,
John R Grider, and Barbara E Piland, and Melisa A Gulick, and Li Ya Qiao
September 1997, Brain research,
John R Grider, and Barbara E Piland, and Melisa A Gulick, and Li Ya Qiao
March 2015, Journal of neuroscience research,
John R Grider, and Barbara E Piland, and Melisa A Gulick, and Li Ya Qiao
July 2020, Journal of psychiatric research,
John R Grider, and Barbara E Piland, and Melisa A Gulick, and Li Ya Qiao
January 2017, Vitamins and hormones,
John R Grider, and Barbara E Piland, and Melisa A Gulick, and Li Ya Qiao
November 2003, The European journal of neuroscience,
John R Grider, and Barbara E Piland, and Melisa A Gulick, and Li Ya Qiao
August 2014, Journal of neuroscience research,
Copied contents to your clipboard!