Folding, misfolding, and amyloid protofibril formation of WW domain FBP28. 2006

Yuguang Mu, and Lars Nordenskiöld, and James P Tam
School of Biological Sciences, Nanyang Technological University, Singapore. ygmu@ntu.edu.sg

We study the folding mechanism of a triple beta-strand WW domain from the Formin binding protein 28 (FBP28) at atomic resolution with explicit water model using replica exchange molecular dynamics computer simulations. Extended sampling over a wide range of temperatures to obtain the free energy, enthalpy, and entropy surfaces as a function of structural coordinates has been performed. Simulations were started from different configurations covering the folded and unfolded states. In the free energy landscape a transition state is identified and its structures and -values are compared with experimental data from a homologous protein, the prolyl-isomerase Pin1 WW domain. A stable intermediate state is found to accumulate during the simulation characterized by the carboxyl-terminal beta-strand 3 having misregistered hydrogen bonds and where the structural heterogeneity is due to nonnative turn II formation. Furthermore, the aggregation behavior of the FBP28 WW domain may be related to one such misfolded structure, which has a much lower free energy of dimer formation than that of the native dimer. Based on the misfolded dimer, aggregation to form protofibril structure is discussed.

UI MeSH Term Description Entries
D008958 Models, Molecular Models used experimentally or theoretically to study molecular shape, electronic properties, or interactions; includes analogous molecules, computer-generated graphics, and mechanical structures. Molecular Models,Model, Molecular,Molecular Model
D011487 Protein Conformation The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). Conformation, Protein,Conformations, Protein,Protein Conformations
D002352 Carrier Proteins Proteins that bind or transport specific substances in the blood, within the cell, or across cell membranes. Binding Proteins,Carrier Protein,Transport Protein,Transport Proteins,Binding Protein,Protein, Carrier,Proteins, Carrier
D003198 Computer Simulation Computer-based representation of physical systems and phenomena such as chemical processes. Computational Modeling,Computational Modelling,Computer Models,In silico Modeling,In silico Models,In silico Simulation,Models, Computer,Computerized Models,Computer Model,Computer Simulations,Computerized Model,In silico Model,Model, Computer,Model, Computerized,Model, In silico,Modeling, Computational,Modeling, In silico,Modelling, Computational,Simulation, Computer,Simulation, In silico,Simulations, Computer
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D006860 Hydrogen Bonding A low-energy attractive force between hydrogen and another element. It plays a major role in determining the properties of water, proteins, and other compounds. Hydrogen Bonds,Bond, Hydrogen,Hydrogen Bond
D000682 Amyloid A fibrous protein complex that consists of proteins folded into a specific cross beta-pleated sheet structure. This fibrillar structure has been found as an alternative folding pattern for a variety of functional proteins. Deposits of amyloid in the form of AMYLOID PLAQUES are associated with a variety of degenerative diseases. The amyloid structure has also been found in a number of functional proteins that are unrelated to disease. Amyloid Fibril,Amyloid Fibrils,Amyloid Substance,Fibril, Amyloid,Fibrils, Amyloid,Substance, Amyloid
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013696 Temperature The property of objects that determines the direction of heat flow when they are placed in direct thermal contact. The temperature is the energy of microscopic motions (vibrational and translational) of the particles of atoms. Temperatures
D013816 Thermodynamics A rigorously mathematical analysis of energy relationships (heat, work, temperature, and equilibrium). It describes systems whose states are determined by thermal parameters, such as temperature, in addition to mechanical and electromagnetic parameters. (From Hawley's Condensed Chemical Dictionary, 12th ed) Thermodynamic

Related Publications

Yuguang Mu, and Lars Nordenskiöld, and James P Tam
August 2003, Proceedings of the National Academy of Sciences of the United States of America,
Yuguang Mu, and Lars Nordenskiöld, and James P Tam
June 2010, The journal of physical chemistry. B,
Yuguang Mu, and Lars Nordenskiöld, and James P Tam
May 2020, The journal of physical chemistry. B,
Yuguang Mu, and Lars Nordenskiöld, and James P Tam
May 2006, Chembiochem : a European journal of chemical biology,
Yuguang Mu, and Lars Nordenskiöld, and James P Tam
February 2010, Biophysical journal,
Yuguang Mu, and Lars Nordenskiöld, and James P Tam
March 2006, Proteins,
Yuguang Mu, and Lars Nordenskiöld, and James P Tam
February 2012, Proceedings of the National Academy of Sciences of the United States of America,
Yuguang Mu, and Lars Nordenskiöld, and James P Tam
October 2007, Protein science : a publication of the Protein Society,
Yuguang Mu, and Lars Nordenskiöld, and James P Tam
July 2016, Archives of biochemistry and biophysics,
Copied contents to your clipboard!