Seroreactive recombinant herpes simplex virus type 2-specific glycoprotein G. 1991

D L Parkes, and C M Smith, and J M Rose, and J Brandis, and S R Coates
Triton Biosciences Inc., Alameda, California 94501.

The herpes simplex virus type 2 (HSV-2) genome codes for an envelope protein, glycoprotein G (gG), which contains predominantly type 2-specific epitopes. A portion of this gG gene has been expressed as a fusion protein in Escherichia coli. Expression was regulated by a lambda phage pL promoter. The 60,000-molecular-weight recombinant protein was purified by ion-exchange chromatography. Amino acid sequence analysis confirmed the N terminus of the purified protein. Mice immunized with recombinant gG developed antibodies reactive with native HSV-2 protein, but not with HSV-1 protein, in an indirect immunofluorescence assay. The serological activity of this purified recombinant gG protein was evaluated by immunoblot assay. This protein was reactive with an HSV-2 gG monoclonal antibody. It was also reactive with HSV-2 rabbit antiserum but not with HSV-1 rabbit antiserum. Of 15 patient serum samples known to have antibody to HSV-2, 14 were reactive with this recombinant type 2-specific gG protein, and none of 15 HSV antibody-negative patient serum samples showed reactivity. In agreement with the expected prevalence of HSV-2 infection, 27.6% of 134 serum samples from random normal individuals had antibodies reactive with recombinant gG. This recombinant gG protein may be of value in detecting HSV-2-specific antibody responses in patients infected with HSV-2.

UI MeSH Term Description Entries
D008970 Molecular Weight The sum of the weight of all the atoms in a molecule. Molecular Weights,Weight, Molecular,Weights, Molecular
D010582 Bacteriophage lambda A temperate inducible phage and type species of the genus lambda-like viruses, in the family SIPHOVIRIDAE. Its natural host is E. coli K12. Its VIRION contains linear double-stranded DNA with single-stranded 12-base 5' sticky ends. The DNA circularizes on infection. Coliphage lambda,Enterobacteria phage lambda,Phage lambda,lambda Phage
D011401 Promoter Regions, Genetic DNA sequences which are recognized (directly or indirectly) and bound by a DNA-dependent RNA polymerase during the initiation of transcription. Highly conserved sequences within the promoter include the Pribnow box in bacteria and the TATA BOX in eukaryotes. rRNA Promoter,Early Promoters, Genetic,Late Promoters, Genetic,Middle Promoters, Genetic,Promoter Regions,Promoter, Genetic,Promotor Regions,Promotor, Genetic,Pseudopromoter, Genetic,Early Promoter, Genetic,Genetic Late Promoter,Genetic Middle Promoters,Genetic Promoter,Genetic Promoter Region,Genetic Promoter Regions,Genetic Promoters,Genetic Promotor,Genetic Promotors,Genetic Pseudopromoter,Genetic Pseudopromoters,Late Promoter, Genetic,Middle Promoter, Genetic,Promoter Region,Promoter Region, Genetic,Promoter, Genetic Early,Promoter, rRNA,Promoters, Genetic,Promoters, Genetic Middle,Promoters, rRNA,Promotor Region,Promotors, Genetic,Pseudopromoters, Genetic,Region, Genetic Promoter,Region, Promoter,Region, Promotor,Regions, Genetic Promoter,Regions, Promoter,Regions, Promotor,rRNA Promoters
D011994 Recombinant Proteins Proteins prepared by recombinant DNA technology. Biosynthetic Protein,Biosynthetic Proteins,DNA Recombinant Proteins,Recombinant Protein,Proteins, Biosynthetic,Proteins, Recombinant DNA,DNA Proteins, Recombinant,Protein, Biosynthetic,Protein, Recombinant,Proteins, DNA Recombinant,Proteins, Recombinant,Recombinant DNA Proteins,Recombinant Proteins, DNA
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D005814 Genes, Viral The functional hereditary units of VIRUSES. Viral Genes,Gene, Viral,Viral Gene
D006561 Herpes Simplex A group of acute infections caused by herpes simplex virus type 1 or type 2 that is characterized by the development of one or more small fluid-filled vesicles with a raised erythematous base on the skin or mucous membrane. It occurs as a primary infection or recurs due to a reactivation of a latent infection. (Dorland, 27th ed.) Herpes Simplex Virus Infection
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000328 Adult A person having attained full growth or maturity. Adults are of 19 through 44 years of age. For a person between 19 and 24 years of age, YOUNG ADULT is available. Adults

Related Publications

D L Parkes, and C M Smith, and J M Rose, and J Brandis, and S R Coates
October 1985, Journal of clinical microbiology,
D L Parkes, and C M Smith, and J M Rose, and J Brandis, and S R Coates
December 2013, Journal of virological methods,
D L Parkes, and C M Smith, and J M Rose, and J Brandis, and S R Coates
August 2004, Journal of virological methods,
D L Parkes, and C M Smith, and J M Rose, and J Brandis, and S R Coates
July 1999, Human gene therapy,
D L Parkes, and C M Smith, and J M Rose, and J Brandis, and S R Coates
December 2000, Journal of clinical microbiology,
D L Parkes, and C M Smith, and J M Rose, and J Brandis, and S R Coates
August 2004, Sexually transmitted diseases,
D L Parkes, and C M Smith, and J M Rose, and J Brandis, and S R Coates
May 1998, The Journal of general virology,
D L Parkes, and C M Smith, and J M Rose, and J Brandis, and S R Coates
April 2000, The Journal of general virology,
D L Parkes, and C M Smith, and J M Rose, and J Brandis, and S R Coates
June 1995, Annals of internal medicine,
D L Parkes, and C M Smith, and J M Rose, and J Brandis, and S R Coates
December 2020, Viruses,
Copied contents to your clipboard!