Effects of DNA-polymerase-defective and recombination-deficient mutations on the ultraviolet sensitivity of Bacillus subtilis spores. 1975

N Munakata, and C S Rupert

The DNA of UV-irradiated Bacillus subtilis spores, which contains 5-thyminyl-5,6-dihydrothymine (TDHT) as the major thymine photoproduct, is known to be repaired during germination by two complementary mechanisms: (I) the well-known excision repair, and (2) a special process, "spore repair", which destroys TDHT in situ without rendering it acid-soluble. In the absence of both mechanisms TDHT is not removed, and spores are highly UV-sensitive. When either of two mutations (pol-59 and pol-151) giving defective DNA polymerase, or one (rec-A1) giving a recombination deficiency are introduced into strains defective in one of these known TDHT removal processes, the chemically measured elimination of TDHT from spore DNA is unaltered, but spore UV-sensitivity is increased. The pol mutations produce their greatest sensitivity increase in spores of strains already deficient for the in situ destruction of TDHT, while the rec mutation gives its maximum sensitivity increase to spores of strains lacking excision. These facts argue that the pol mutations interfere mostly with excision repair (presumably its later resynthesis step), shile the rec mutation impairs "spore repair" in some step occurring subsequent to the TDHT destruction in situ. With either of these impairments of the later repair steps, DNA of UV-irradiated and germinated spores is considerably degraded, unless germination is carried out in the presence of chloramphenicol.

UI MeSH Term Description Entries
D008698 Mesylates Organic salts or esters of methanesulfonic acid. Mesilate,Methanesulfonates,Mesilates,Mesylate,Methylenesulfonates
D008937 Mitomycins A group of methylazirinopyrroloindolediones obtained from certain Streptomyces strains. They are very toxic antibiotics used as ANTINEOPLASTIC AGENTS in some solid tumors. PORFIROMYCIN and MITOMYCIN are the most useful members of the group.
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D010777 Photochemistry A branch of physical chemistry which studies chemical reactions, isomerization and physical behavior that may occur under the influence of visible and/or ultraviolet light. Photochemistries
D011831 Radiation Genetics A subdiscipline of genetics that studies RADIATION EFFECTS on the components and processes of biological inheritance. Genetics, Radiation
D011995 Recombination, Genetic Production of new arrangements of DNA by various mechanisms such as assortment and segregation, CROSSING OVER; GENE CONVERSION; GENETIC TRANSFORMATION; GENETIC CONJUGATION; GENETIC TRANSDUCTION; or mixed infection of viruses. Genetic Recombination,Recombination,Genetic Recombinations,Recombinations,Recombinations, Genetic
D004254 DNA Nucleotidyltransferases Enzymes that catalyze the incorporation of deoxyribonucleotides into a chain of DNA. EC 2.7.7.-. Nucleotidyltransferases, DNA
D004260 DNA Repair The removal of DNA LESIONS and/or restoration of intact DNA strands without BASE PAIR MISMATCHES, intrastrand or interstrand crosslinks, or discontinuities in the DNA sugar-phosphate backbones. DNA Damage Response
D004269 DNA, Bacterial Deoxyribonucleic acid that makes up the genetic material of bacteria. Bacterial DNA
D001412 Bacillus subtilis A species of gram-positive bacteria that is a common soil and water saprophyte. Natto Bacteria,Bacillus subtilis (natto),Bacillus subtilis subsp. natto,Bacillus subtilis var. natto

Related Publications

N Munakata, and C S Rupert
October 1974, Journal of bacteriology,
N Munakata, and C S Rupert
May 1967, Radiation research,
N Munakata, and C S Rupert
January 1975, Life sciences and space research,
N Munakata, and C S Rupert
April 1973, Biochemical and biophysical research communications,
N Munakata, and C S Rupert
February 1976, Journal of bacteriology,
N Munakata, and C S Rupert
January 1973, Mutation research,
Copied contents to your clipboard!