Differential projections of dorsal raphe nucleus neurons to the lateral septum and striatum. 2006

Maria Waselus, and Juan P Galvez, and Rita J Valentino, and Elisabeth J Van Bockstaele
Department of Neurosurgery, Thomas Jefferson University, Farber Institute for Neurosciences, 900 Walnut Street, Philadelphia, PA 19107, USA. maria.waselus@jefferson.edu

The dorsal raphe nucleus (DRN)-serotonin (5-HT) system has been implicated in acute responses to stress and stress-related psychiatric disorders such as anxiety and depression. Stress alters serotonin (5-HT) release in a regionally specific manner. For example, swim stress increases extracellular levels of 5-HT in the striatum and decreases levels in the lateral septum. This finding suggests that the 5-HT efferents to the striatum and lateral septum arise from distinct populations of DRN neurons that are differentially affected by swim stress. To further examine this, retrograde axonal transport of fluorescent RetroBeads was used to identify the distribution of DRN neurons projecting to the lateral septum and striatum in the rat brain. Retrograde labeling from the lateral septum was observed primarily within the more caudal portions of the DRN, while labeling from the striatum was observed in neurons located in the more rostral regions of the DRN. Few cell bodies were observed that were labeled from both the striatum and lateral septum suggesting that DRN neurons do not send collateralized projections to the septal region and striatum. Many septal- and striatal-projecting neurons in the DRN exhibited 5-HT, and collateralized projections, when observed, were immunoreactive for 5-HT. Taken together with previous microdialysis studies, these results support the existence of distinct DRN-5-HT-forebrain projections that are differentially regulated by stress.

UI MeSH Term Description Entries
D007150 Immunohistochemistry Histochemical localization of immunoreactive substances using labeled antibodies as reagents. Immunocytochemistry,Immunogold Techniques,Immunogold-Silver Techniques,Immunohistocytochemistry,Immunolabeling Techniques,Immunogold Technics,Immunogold-Silver Technics,Immunolabeling Technics,Immunogold Silver Technics,Immunogold Silver Techniques,Immunogold Technic,Immunogold Technique,Immunogold-Silver Technic,Immunogold-Silver Technique,Immunolabeling Technic,Immunolabeling Technique,Technic, Immunogold,Technic, Immunogold-Silver,Technic, Immunolabeling,Technics, Immunogold,Technics, Immunogold-Silver,Technics, Immunolabeling,Technique, Immunogold,Technique, Immunogold-Silver,Technique, Immunolabeling,Techniques, Immunogold,Techniques, Immunogold-Silver,Techniques, Immunolabeling
D008297 Male Males
D008636 Mesencephalon The middle of the three primitive cerebral vesicles of the embryonic brain. Without further subdivision, midbrain develops into a short, constricted portion connecting the PONS and the DIENCEPHALON. Midbrain contains two major parts, the dorsal TECTUM MESENCEPHALI and the ventral TEGMENTUM MESENCEPHALI, housing components of auditory, visual, and other sensorimoter systems. Midbrain,Mesencephalons,Midbrains
D008863 Microspheres Small uniformly-sized spherical particles, of micrometer dimensions, frequently labeled with radioisotopes or various reagents acting as tags or markers. Latex Beads,Latex Particles,Latex Spheres,Microbeads,Bead, Latex,Beads, Latex,Latex Bead,Latex Particle,Latex Sphere,Microbead,Microsphere,Particle, Latex,Particles, Latex,Sphere, Latex,Spheres, Latex
D009434 Neural Pathways Neural tracts connecting one part of the nervous system with another. Neural Interconnections,Interconnection, Neural,Interconnections, Neural,Neural Interconnection,Neural Pathway,Pathway, Neural,Pathways, Neural
D011149 Pons The front part of the hindbrain (RHOMBENCEPHALON) that lies between the MEDULLA and the midbrain (MESENCEPHALON) ventral to the cerebellum. It is composed of two parts, the dorsal and the ventral. The pons serves as a relay station for neural pathways between the CEREBELLUM to the CEREBRUM. Pons Varolii,Ponte,Pons Varolius,Pontes,Varolii, Pons,Varolius, Pons
D011903 Raphe Nuclei Collections of small neurons centrally scattered among many fibers from the level of the TROCHLEAR NUCLEUS in the midbrain to the hypoglossal area in the MEDULLA OBLONGATA. Caudal Linear Nucleus of the Raphe,Interfascicular Nucleus,Nucleus Incertus,Rostral Linear Nucleus of Raphe,Rostral Linear Nucleus of the Raphe,Superior Central Nucleus,Central Nucleus, Superior,Incertus, Nucleus,Nuclei, Raphe,Nucleus, Interfascicular,Nucleus, Raphe,Nucleus, Superior Central,Raphe Nucleus
D003342 Corpus Striatum Striped GRAY MATTER and WHITE MATTER consisting of the NEOSTRIATUM and paleostriatum (GLOBUS PALLIDUS). It is located in front of and lateral to the THALAMUS in each cerebral hemisphere. The gray substance is made up of the CAUDATE NUCLEUS and the lentiform nucleus (the latter consisting of the GLOBUS PALLIDUS and PUTAMEN). The WHITE MATTER is the INTERNAL CAPSULE. Lenticular Nucleus,Lentiform Nucleus,Lentiform Nuclei,Nucleus Lentiformis,Lentiformis, Nucleus,Nuclei, Lentiform,Nucleus, Lenticular,Nucleus, Lentiform,Striatum, Corpus
D005456 Fluorescent Dyes Chemicals that emit light after excitation by light. The wave length of the emitted light is usually longer than that of the incident light. Fluorochromes are substances that cause fluorescence in other substances, i.e., dyes used to mark or label other compounds with fluorescent tags. Flourescent Agent,Fluorescent Dye,Fluorescent Probe,Fluorescent Probes,Fluorochrome,Fluorochromes,Fluorogenic Substrates,Fluorescence Agents,Fluorescent Agents,Fluorogenic Substrate,Agents, Fluorescence,Agents, Fluorescent,Dyes, Fluorescent,Probes, Fluorescent,Substrates, Fluorogenic
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

Maria Waselus, and Juan P Galvez, and Rita J Valentino, and Elisabeth J Van Bockstaele
May 1978, Brain research,
Maria Waselus, and Juan P Galvez, and Rita J Valentino, and Elisabeth J Van Bockstaele
October 1982, Brain research,
Maria Waselus, and Juan P Galvez, and Rita J Valentino, and Elisabeth J Van Bockstaele
December 1998, Neuroscience letters,
Maria Waselus, and Juan P Galvez, and Rita J Valentino, and Elisabeth J Van Bockstaele
February 2003, Brain research,
Maria Waselus, and Juan P Galvez, and Rita J Valentino, and Elisabeth J Van Bockstaele
April 2002, Brain research,
Maria Waselus, and Juan P Galvez, and Rita J Valentino, and Elisabeth J Van Bockstaele
July 1991, Brain research,
Maria Waselus, and Juan P Galvez, and Rita J Valentino, and Elisabeth J Van Bockstaele
April 2001, Brain research bulletin,
Maria Waselus, and Juan P Galvez, and Rita J Valentino, and Elisabeth J Van Bockstaele
January 1992, Journal of chemical neuroanatomy,
Maria Waselus, and Juan P Galvez, and Rita J Valentino, and Elisabeth J Van Bockstaele
February 1975, Brain research,
Maria Waselus, and Juan P Galvez, and Rita J Valentino, and Elisabeth J Van Bockstaele
July 2022, Nature communications,
Copied contents to your clipboard!