Endothelial function and exercise training: evidence from studies using animal models. 2006

Jeffrey L Jasperse, and M Harold Laughlin
Department of Sports Medicine, Pepperdine University, Malibu, CA, USA. jeffrey.jasperse@pepperdine.edu

This review summarizes and examines the evidence from experiments using animal models to determine the effect of endurance exercise training on endothelium-dependent dilation in the arterial circulation. The response of the endothelium to exercise training is complex and depends on a number of factors that include the duration of the training program, the size of the artery/arteriole, the anatomical location of the artery/arteriole, and the health of the individual. In healthy animals, short-term exercise training appears to cause enhanced endothelium-dependent dilation in some vascular beds, but it returns to normal levels as the duration of the training program increases. In general, evidence supports the notion that exercise training causes greater increases in endothelium-dependent dilation in various disease states than in healthy individuals. The evidence of a generalized effect of training on arterial endothelium in all regions of the body is inconsistent and appears to depend on the animal model used. Available results indicate that training duration, artery size, and anatomical location interact in ways not fully understood at this time to determine whether and to what extent endothelium-dependent dilation will be enhanced by exercise training.

UI MeSH Term Description Entries
D008297 Male Males
D009141 Musculoskeletal System The MUSCLES, bones (BONE AND BONES), and CARTILAGE of the body. Musculoskeletal Systems,System, Musculoskeletal,Systems, Musculoskeletal
D010805 Physical Conditioning, Animal Diet modification and physical exercise to improve the ability of animals to perform physical activities. Animal Physical Conditioning,Animal Physical Conditionings,Conditioning, Animal Physical,Conditionings, Animal Physical,Physical Conditionings, Animal
D005260 Female Females
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013552 Swine Any of various animals that constitute the family Suidae and comprise stout-bodied, short-legged omnivorous mammals with thick skin, usually covered with coarse bristles, a rather long mobile snout, and small tail. Included are the genera Babyrousa, Phacochoerus (wart hogs), and Sus, the latter containing the domestic pig (see SUS SCROFA). Phacochoerus,Pigs,Suidae,Warthogs,Wart Hogs,Hog, Wart,Hogs, Wart,Wart Hog
D014664 Vasodilation The physiological widening of BLOOD VESSELS by relaxing the underlying VASCULAR SMOOTH MUSCLE. Vasodilatation,Vasorelaxation,Vascular Endothelium-Dependent Relaxation,Endothelium-Dependent Relaxation, Vascular,Relaxation, Vascular Endothelium-Dependent,Vascular Endothelium Dependent Relaxation
D042783 Endothelial Cells Highly specialized EPITHELIAL CELLS that line the HEART; BLOOD VESSELS; and lymph vessels, forming the ENDOTHELIUM. They are polygonal in shape and joined together by TIGHT JUNCTIONS. The tight junctions allow for variable permeability to specific macromolecules that are transported across the endothelial layer. Capillary Endothelial Cells,Lymphatic Endothelial Cells,Vascular Endothelial Cells,Capillary Endothelial Cell,Cell, Capillary Endothelial,Cell, Endothelial,Cell, Lymphatic Endothelial,Cell, Vascular Endothelial,Cells, Capillary Endothelial,Cells, Endothelial,Cells, Lymphatic Endothelial,Cells, Vascular Endothelial,Endothelial Cell,Endothelial Cell, Capillary,Endothelial Cell, Lymphatic,Endothelial Cell, Vascular,Endothelial Cells, Capillary,Endothelial Cells, Lymphatic,Endothelial Cells, Vascular,Lymphatic Endothelial Cell,Vascular Endothelial Cell
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus
D023421 Models, Animal Non-human animals, selected because of specific characteristics, for use in experimental research, teaching, or testing. Experimental Animal Models,Laboratory Animal Models,Animal Model,Animal Model, Experimental,Animal Model, Laboratory,Animal Models,Animal Models, Experimental,Animal Models, Laboratory,Experimental Animal Model,Laboratory Animal Model,Model, Animal,Model, Experimental Animal,Model, Laboratory Animal,Models, Experimental Animal,Models, Laboratory Animal

Related Publications

Jeffrey L Jasperse, and M Harold Laughlin
January 2017, Advances in experimental medicine and biology,
Jeffrey L Jasperse, and M Harold Laughlin
September 2018, Reproduction (Cambridge, England),
Jeffrey L Jasperse, and M Harold Laughlin
January 2024, Brazilian journal of medical and biological research = Revista brasileira de pesquisas medicas e biologicas,
Jeffrey L Jasperse, and M Harold Laughlin
May 1983, Annals of neurology,
Jeffrey L Jasperse, and M Harold Laughlin
July 2015, The Canadian journal of neurological sciences. Le journal canadien des sciences neurologiques,
Jeffrey L Jasperse, and M Harold Laughlin
July 2009, Therapeutic advances in gastroenterology,
Jeffrey L Jasperse, and M Harold Laughlin
March 2006, Current urology reports,
Jeffrey L Jasperse, and M Harold Laughlin
June 1980, Military medicine,
Jeffrey L Jasperse, and M Harold Laughlin
June 2010, Psychiatry and clinical neurosciences,
Jeffrey L Jasperse, and M Harold Laughlin
November 2011, The neurologist,
Copied contents to your clipboard!