Fluorescent labeling of renal cells in vivo. 2006

Sharon L Ashworth, and George A Tanner
Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA.

In vivo fluorescence imaging, using confocal or multiphoton microscopes, provides a powerful method to analyze kidney function in experimental animals. In this review, the preparation used for physiological studies in rats is described. A variety of fluorescent probes are available to study glomerular permeability, renal blood flow, peritubular capillary permeability, cell ion concentrations, tubule transport properties, and the functional status of renal cells. We have recently used micropuncture techniques and an adenovirus vector to accomplish gene transfer into kidney tubule and endothelial cells; this new methodology will allow the dynamic study of fluorescently-labeled proteins. Two examples of the use of two-photon fluorescence microscopy to study renal pathophysiology, namely polycystic kidney disease and renal ischemia, are presented. Software is available to quantify data collected from in vivo imaging experiments and to construct 3-dimensional images of renal structures. Two-photon or confocal microscopy offers many opportunities for a better understanding of kidney function in health and disease.

UI MeSH Term Description Entries
D007668 Kidney Body organ that filters blood for the secretion of URINE and that regulates ion concentrations. Kidneys
D007674 Kidney Diseases Pathological processes of the KIDNEY or its component tissues. Disease, Kidney,Diseases, Kidney,Kidney Disease
D005456 Fluorescent Dyes Chemicals that emit light after excitation by light. The wave length of the emitted light is usually longer than that of the incident light. Fluorochromes are substances that cause fluorescence in other substances, i.e., dyes used to mark or label other compounds with fluorescent tags. Flourescent Agent,Fluorescent Dye,Fluorescent Probe,Fluorescent Probes,Fluorochrome,Fluorochromes,Fluorogenic Substrates,Fluorescence Agents,Fluorescent Agents,Fluorogenic Substrate,Agents, Fluorescence,Agents, Fluorescent,Dyes, Fluorescent,Probes, Fluorescent,Substrates, Fluorogenic
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D036641 Microscopy, Fluorescence, Multiphoton Fluorescence microscopy utilizing multiple low-energy photons to produce the excitation event of the fluorophore (endogenous fluorescent molecules in living tissues or FLUORESCENT DYES). Multiphoton microscopes have a simplified optical path in the emission side due to the lack of an emission pinhole, which is necessary with normal confocal microscopes. Ultimately this allows spatial isolation of the excitation event, enabling deeper imaging into optically thick tissue, while restricting photobleaching and phototoxicity to the area being imaged. Fluorescence Microscopy, Multiphoton,Multiphoton Fluorescence Microscopy,Multiphoton Excitation Microscopy,Excitation Microscopies, Multiphoton,Excitation Microscopy, Multiphoton,Microscopies, Multiphoton Excitation,Microscopy, Multiphoton Excitation,Microscopy, Multiphoton Fluorescence,Multiphoton Excitation Microscopies

Related Publications

Sharon L Ashworth, and George A Tanner
December 1982, Thrombosis research,
Sharon L Ashworth, and George A Tanner
January 2012, Current chemical genomics,
Sharon L Ashworth, and George A Tanner
October 2023, Nature protocols,
Sharon L Ashworth, and George A Tanner
March 2003, Experimental eye research,
Sharon L Ashworth, and George A Tanner
May 2007, Chembiochem : a European journal of chemical biology,
Sharon L Ashworth, and George A Tanner
May 1996, Journal of leukocyte biology,
Sharon L Ashworth, and George A Tanner
January 2015, Methods in molecular biology (Clifton, N.J.),
Sharon L Ashworth, and George A Tanner
June 2020, Bioconjugate chemistry,
Sharon L Ashworth, and George A Tanner
January 1990, Methods in cell biology,
Sharon L Ashworth, and George A Tanner
September 2010, Nature protocols,
Copied contents to your clipboard!