[The effect of DNA supercoiling DNA on nucleosome structure]. 1991

A V Sivolob, and S N Khrapunov

The circular DNA which contains nucleosomes and additional supercoils has been considered theoretically. The different possible effect of increased negative supercoiling on the nucleosome structure have been studied. According to the model proposed all supercoils in the nucleosome-containing circular DNA are realized as torsional deformations of the double helix. The free energy of both supercoiling (torsional deformations) and nucleosome stabilization have been taken into consideration to obtain the equation for free energy of nucleosome-containing circular DNA. The analysis of this equation and the experimental data by Garner et al. (II Psoc. Natl. Acad. Sci. USA. 1987. P. 2620-2623) about the maximum amount of supercoiling obtained by DNA-topoisomerase II treatment of nucleosome-containing pBR322 plasmid has been performed. It has been shown that two possibilities are consistent with both the equation and experimental data. These are: (1) the increased supercoiling induces the torsional strains not only in linker regions but also in nucleosome DNA and thus supercoiling causes an instability on nucleosome structure; (2) increased supercoiling induces a structural change of nucleosome which is accompanied by nucleosome DNA unwinding and its transition into form with approximately 11 base pairs per turn of double helix. It has been evaluated that in the first case the average torsional rigidity of nucleosome DNA should be approximately 2.5 times as much and in the second case--much more than the rigidity of naked DNA. Both types of nucleosome structural changes may cause its transition to a potentially active state for transcription. It is suggested that increased supercoiling can be a switch mechanism of chromatin activation.

UI MeSH Term Description Entries
D009693 Nucleic Acid Hybridization Widely used technique which exploits the ability of complementary sequences in single-stranded DNAs or RNAs to pair with each other to form a double helix. Hybridization can take place between two complimentary DNA sequences, between a single-stranded DNA and a complementary RNA, or between two RNA sequences. The technique is used to detect and isolate specific sequences, measure homology, or define other characteristics of one or both strands. (Kendrew, Encyclopedia of Molecular Biology, 1994, p503) Genomic Hybridization,Acid Hybridization, Nucleic,Acid Hybridizations, Nucleic,Genomic Hybridizations,Hybridization, Genomic,Hybridization, Nucleic Acid,Hybridizations, Genomic,Hybridizations, Nucleic Acid,Nucleic Acid Hybridizations
D009707 Nucleosomes The repeating structural units of chromatin, each consisting of approximately 200 base pairs of DNA wound around a protein core. This core is composed of the histones H2A, H2B, H3, and H4. Dinucleosomes,Polynucleosomes,Dinucleosome,Nucleosome,Polynucleosome
D002843 Chromatin The material of CHROMOSOMES. It is a complex of DNA; HISTONES; and nonhistone proteins (CHROMOSOMAL PROTEINS, NON-HISTONE) found within the nucleus of a cell. Chromatins
D004264 DNA Topoisomerases, Type I DNA TOPOISOMERASES that catalyze ATP-independent breakage of one of the two strands of DNA, passage of the unbroken strand through the break, and rejoining of the broken strand. DNA Topoisomerases, Type I enzymes reduce the topological stress in the DNA structure by relaxing the superhelical turns and knotted rings in the DNA helix. DNA Nicking-Closing Protein,DNA Relaxing Enzyme,DNA Relaxing Protein,DNA Topoisomerase,DNA Topoisomerase I,DNA Topoisomerase III,DNA Topoisomerase III alpha,DNA Topoisomerase III beta,DNA Untwisting Enzyme,DNA Untwisting Protein,TOP3 Topoisomerase,TOP3alpha,TOPO IIIalpha,Topo III,Topoisomerase III,Topoisomerase III beta,Topoisomerase IIIalpha,Topoisomerase IIIbeta,DNA Nicking-Closing Proteins,DNA Relaxing Enzymes,DNA Type 1 Topoisomerase,DNA Untwisting Enzymes,DNA Untwisting Proteins,Topoisomerase I,Type I DNA Topoisomerase,III beta, Topoisomerase,III, DNA Topoisomerase,III, Topo,III, Topoisomerase,IIIalpha, TOPO,IIIalpha, Topoisomerase,IIIbeta, Topoisomerase,Topoisomerase III, DNA,Topoisomerase, TOP3,beta, Topoisomerase III
D004278 DNA, Superhelical Circular duplex DNA isolated from viruses, bacteria and mitochondria in supercoiled or supertwisted form. This superhelical DNA is endowed with free energy. During transcription, the magnitude of RNA initiation is proportional to the DNA superhelicity. DNA, Supercoiled,DNA, Supertwisted,Supercoiled DNA,Superhelical DNA,Supertwisted DNA
D001482 Base Composition The relative amounts of the PURINES and PYRIMIDINES in a nucleic acid. Base Ratio,G+C Composition,Guanine + Cytosine Composition,G+C Content,GC Composition,GC Content,Guanine + Cytosine Content,Base Compositions,Base Ratios,Composition, Base,Composition, G+C,Composition, GC,Compositions, Base,Compositions, G+C,Compositions, GC,Content, G+C,Content, GC,Contents, G+C,Contents, GC,G+C Compositions,G+C Contents,GC Compositions,GC Contents,Ratio, Base,Ratios, Base
D014158 Transcription, Genetic The biosynthesis of RNA carried out on a template of DNA. The biosynthesis of DNA from an RNA template is called REVERSE TRANSCRIPTION. Genetic Transcription

Related Publications

A V Sivolob, and S N Khrapunov
February 2015, Journal of physics. Condensed matter : an Institute of Physics journal,
A V Sivolob, and S N Khrapunov
November 1993, Journal of molecular biology,
A V Sivolob, and S N Khrapunov
March 1988, Journal of molecular biology,
A V Sivolob, and S N Khrapunov
April 1986, Biochemical Society transactions,
A V Sivolob, and S N Khrapunov
April 1992, Journal of molecular biology,
A V Sivolob, and S N Khrapunov
June 1979, Biochemistry,
A V Sivolob, and S N Khrapunov
January 1984, Journal of cell science. Supplement,
Copied contents to your clipboard!