Comparative study of endoplasmic reticulum stress-induced neuronal death in rat cultured hippocampal and cerebellar granule neurons. 2006

Yasuhiro Kosuge, and Taeko Sakikubo, and Kumiko Ishige, and Yoshihisa Ito
Department of Pharmacology, College of Pharmacy, Nihon University, Funabashi 274-8555, Japan.

In this study, experiments were performed to characterize further the pathways responsible for neuronal death induced by endoplasmic reticulum (ER) stress in cultured hippocampal neurons (HPN) and cerebellar granule neurons (CGN) using tunicamycin (TM) and amyloid beta-peptide (Abeta). Exposure of HPN to Abeta or TM resulted in a time-dependent increase in the expression of 78-kDa glucose-regulated protein (GRP78) and caspase-12, an ER-resident caspase. In contrast, in CGN, although a drastic increase in the expression of GRP78 was found as was the case in HPN, no up-regulation of caspase-12 was detected. These results were consistent with immunohistochemical results that there were far lower number of caspase-12-positive cells in the cerebellum than in the cerebral cortex and hippocampus, and that caspase-12-positive cells were not identified in the external granule cell layer of the cerebellum of P7 rats. In CGN, a significant increase in the expression of C/EBP homologous protein (CHOP) protein was detected after exposure to Abeta or TM, whereas no such an increase in the protein expression was observed in HPN. In addition, S-allyl-L-cysteine (SAC), an organosulfur compound purified from aged garlic extract, protected neurons against TM-induced neurotoxicity in HPN but not in CGN, as in the case of Abeta-induced neurotoxicity. These results suggest that the pathway responsible for neuronal death induced by Abeta and TM in HPN differs from that in CGN, and that a caspase-12-dependent pathway is involved in HPN while a CHOP-dependent pathway is involved in CGN in ER stress-induced neuronal death.

UI MeSH Term Description Entries
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D002470 Cell Survival The span of viability of a cell characterized by the capacity to perform certain functions such as metabolism, growth, reproduction, some form of responsiveness, and adaptability. Cell Viability,Cell Viabilities,Survival, Cell,Viabilities, Cell,Viability, Cell
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D002531 Cerebellum The part of brain that lies behind the BRAIN STEM in the posterior base of skull (CRANIAL FOSSA, POSTERIOR). It is also known as the "little brain" with convolutions similar to those of CEREBRAL CORTEX, inner white matter, and deep cerebellar nuclei. Its function is to coordinate voluntary movements, maintain balance, and learn motor skills. Cerebella,Corpus Cerebelli,Parencephalon,Cerebellums,Parencephalons
D004721 Endoplasmic Reticulum A system of cisternae in the CYTOPLASM of many cells. In places the endoplasmic reticulum is continuous with the plasma membrane (CELL MEMBRANE) or outer membrane of the nuclear envelope. If the outer surfaces of the endoplasmic reticulum membranes are coated with ribosomes, the endoplasmic reticulum is said to be rough-surfaced (ENDOPLASMIC RETICULUM, ROUGH); otherwise it is said to be smooth-surfaced (ENDOPLASMIC RETICULUM, SMOOTH). (King & Stansfield, A Dictionary of Genetics, 4th ed) Ergastoplasm,Reticulum, Endoplasmic
D006624 Hippocampus A curved elevation of GRAY MATTER extending the entire length of the floor of the TEMPORAL HORN of the LATERAL VENTRICLE (see also TEMPORAL LOBE). The hippocampus proper, subiculum, and DENTATE GYRUS constitute the hippocampal formation. Sometimes authors include the ENTORHINAL CORTEX in the hippocampal formation. Ammon Horn,Cornu Ammonis,Hippocampal Formation,Subiculum,Ammon's Horn,Hippocampus Proper,Ammons Horn,Formation, Hippocampal,Formations, Hippocampal,Hippocampal Formations,Hippocampus Propers,Horn, Ammon,Horn, Ammon's,Proper, Hippocampus,Propers, Hippocampus,Subiculums
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D014415 Tunicamycin An N-acetylglycosamine containing antiviral antibiotic obtained from Streptomyces lysosuperificus. It is also active against some bacteria and fungi, because it inhibits the glucosylation of proteins. Tunicamycin is used as tool in the study of microbial biosynthetic mechanisms.
D016923 Cell Death The termination of the cell's ability to carry out vital functions such as metabolism, growth, reproduction, responsiveness, and adaptability. Death, Cell
D017208 Rats, Wistar A strain of albino rat developed at the Wistar Institute that has spread widely at other institutions. This has markedly diluted the original strain. Wistar Rat,Rat, Wistar,Wistar Rats

Related Publications

Yasuhiro Kosuge, and Taeko Sakikubo, and Kumiko Ishige, and Yoshihisa Ito
December 2003, Neuroscience letters,
Yasuhiro Kosuge, and Taeko Sakikubo, and Kumiko Ishige, and Yoshihisa Ito
October 2005, Journal of neuroscience research,
Yasuhiro Kosuge, and Taeko Sakikubo, and Kumiko Ishige, and Yoshihisa Ito
October 2017, Neuro endocrinology letters,
Yasuhiro Kosuge, and Taeko Sakikubo, and Kumiko Ishige, and Yoshihisa Ito
August 2002, Neuroscience letters,
Yasuhiro Kosuge, and Taeko Sakikubo, and Kumiko Ishige, and Yoshihisa Ito
August 2010, Cellular and molecular neurobiology,
Yasuhiro Kosuge, and Taeko Sakikubo, and Kumiko Ishige, and Yoshihisa Ito
May 2008, Neurochemistry international,
Yasuhiro Kosuge, and Taeko Sakikubo, and Kumiko Ishige, and Yoshihisa Ito
August 1995, The Journal of pharmacology and experimental therapeutics,
Yasuhiro Kosuge, and Taeko Sakikubo, and Kumiko Ishige, and Yoshihisa Ito
October 2016, Molecular neurobiology,
Yasuhiro Kosuge, and Taeko Sakikubo, and Kumiko Ishige, and Yoshihisa Ito
November 2003, Brain research,
Yasuhiro Kosuge, and Taeko Sakikubo, and Kumiko Ishige, and Yoshihisa Ito
March 2008, Journal of neuroscience research,
Copied contents to your clipboard!