P2X purinoceptors and sensory transmission. 2006

Terumasa Nakatsuka, and Jianguo G Gu
Department of Physiology, Faculty of Medicine, Saga University, 5-1-1 Nabeshima, Saga, 849-8501, Japan. nakatsuk@cc.saga-u.ac.jp

The involvement of P2X purinoreceptors (P2X receptors) in somatosensory transmission is herein reviewed with a focus on those receptors that are expressed on sensory neurons to elucidate their roles in the initiation of sensory excitation from primary afferent neurons, in modulating synaptic transmission at the first sensory synapses formed between primary afferent central terminals and dorsal horn neurons, in directly mediating sensory synaptic transmission to the spinal cord dorsal horn, and in modulating synaptic transmission among spinal cord dorsal horn neurons. Research on P2X receptors has indicated that these receptors play a significant role in both physiological and pathological pain states. As a result, P2X receptors may serve as therapeutic targets for the treatment of pathological pain conditions associated with nerve injury, tissue inflammation, cancer, and other diseases.

UI MeSH Term Description Entries
D009435 Synaptic Transmission The communication from a NEURON to a target (neuron, muscle, or secretory cell) across a SYNAPSE. In chemical synaptic transmission, the presynaptic neuron releases a NEUROTRANSMITTER that diffuses across the synaptic cleft and binds to specific synaptic receptors, activating them. The activated receptors modulate specific ion channels and/or second-messenger systems in the postsynaptic cell. In electrical synaptic transmission, electrical signals are communicated as an ionic current flow across ELECTRICAL SYNAPSES. Neural Transmission,Neurotransmission,Transmission, Neural,Transmission, Synaptic
D009475 Neurons, Afferent Neurons which conduct NERVE IMPULSES to the CENTRAL NERVOUS SYSTEM. Afferent Neurons,Afferent Neuron,Neuron, Afferent
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000255 Adenosine Triphosphate An adenine nucleotide containing three phosphate groups esterified to the sugar moiety. In addition to its crucial roles in metabolism adenosine triphosphate is a neurotransmitter. ATP,Adenosine Triphosphate, Calcium Salt,Adenosine Triphosphate, Chromium Salt,Adenosine Triphosphate, Magnesium Salt,Adenosine Triphosphate, Manganese Salt,Adenylpyrophosphate,CaATP,CrATP,Manganese Adenosine Triphosphate,MgATP,MnATP,ATP-MgCl2,Adenosine Triphosphate, Chromium Ammonium Salt,Adenosine Triphosphate, Magnesium Chloride,Atriphos,Chromium Adenosine Triphosphate,Cr(H2O)4 ATP,Magnesium Adenosine Triphosphate,Striadyne,ATP MgCl2
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012677 Sensation The process in which specialized SENSORY RECEPTOR CELLS transduce peripheral stimuli (physical or chemical) into NERVE IMPULSES which are then transmitted to the various sensory centers in the CENTRAL NERVOUS SYSTEM. Sensory Function,Organoleptic,Function, Sensory,Functions, Sensory,Sensations,Sensory Functions
D013116 Spinal Cord A cylindrical column of tissue that lies within the vertebral canal. It is composed of WHITE MATTER and GRAY MATTER. Coccygeal Cord,Conus Medullaris,Conus Terminalis,Lumbar Cord,Medulla Spinalis,Myelon,Sacral Cord,Thoracic Cord,Coccygeal Cords,Conus Medullari,Conus Terminali,Cord, Coccygeal,Cord, Lumbar,Cord, Sacral,Cord, Spinal,Cord, Thoracic,Cords, Coccygeal,Cords, Lumbar,Cords, Sacral,Cords, Spinal,Cords, Thoracic,Lumbar Cords,Medulla Spinali,Medullari, Conus,Medullaris, Conus,Myelons,Sacral Cords,Spinal Cords,Spinali, Medulla,Spinalis, Medulla,Terminali, Conus,Terminalis, Conus,Thoracic Cords
D018048 Receptors, Purinergic P2 A class of cell surface receptors for PURINES that prefer ATP or ADP over ADENOSINE. P2 purinergic receptors are widespread in the periphery and in the central and peripheral nervous system. ADP Receptors,ATP Receptors,P2 Purinoceptors,Purinergic P2 Receptors,Receptors, ADP,Receptors, ATP,ADP Receptor,ATP Receptor,P2 Purinoceptor,Receptor, Purinergic P2,P2 Receptor, Purinergic,P2 Receptors, Purinergic,Purinergic P2 Receptor,Purinoceptor, P2,Purinoceptors, P2,Receptor, ADP,Receptor, ATP

Related Publications

Terumasa Nakatsuka, and Jianguo G Gu
March 1998, Cell death and differentiation,
Terumasa Nakatsuka, and Jianguo G Gu
October 1999, Sheng li ke xue jin zhan [Progress in physiology],
Terumasa Nakatsuka, and Jianguo G Gu
January 1994, Pharmacology & therapeutics,
Terumasa Nakatsuka, and Jianguo G Gu
December 1995, Naunyn-Schmiedeberg's archives of pharmacology,
Terumasa Nakatsuka, and Jianguo G Gu
January 2011, Handbook of experimental pharmacology,
Terumasa Nakatsuka, and Jianguo G Gu
May 1995, Trends in pharmacological sciences,
Terumasa Nakatsuka, and Jianguo G Gu
May 1998, Journal of cardiovascular pharmacology,
Terumasa Nakatsuka, and Jianguo G Gu
December 1989, European journal of pharmacology,
Terumasa Nakatsuka, and Jianguo G Gu
December 2007, Clinical and experimental pharmacology & physiology,
Terumasa Nakatsuka, and Jianguo G Gu
March 2003, British journal of pharmacology,
Copied contents to your clipboard!