Antimigraine drug, zolmitriptan, inhibits high-voltage activated calcium currents in a population of acutely dissociated rat trigeminal sensory neurons. 2006

Tomoko Morikawa, and Yoshiyasu Matsuzawa, and Koshi Makita, and Yoshifumi Katayama
Department of Anesthesiology, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan. mrkwmane@tmd.ac.jp

BACKGROUND Triptans, 5-HT(1B/ID) agonists, act on peripheral and/or central terminals of trigeminal ganglion neurons (TGNs) and inhibit the release of neurotransmitters to second-order neurons, which is considered as one of key mechanisms for pain relief by triptans as antimigraine drugs. Although high-voltage activated (HVA) Ca(2+) channels contribute to the release of neurotransmitters from TGNs, electrical actions of triptans on the HVA Ca(2+) channels are not yet documented. RESULTS In the present study, actions of zolmitriptan, one of triptans, were examined on the HVA Ca(2+) channels in acutely dissociated rat TGNs, by using whole-cell patch recording of Ba(2+) currents I(Ba) passing through Ca(2+) channels. Zolmitriptan (0.1-100 microM) reduced the size of IBa in a concentration-dependent manner. This zolmitriptan-induced inhibitory action was blocked by GR127935, a 5-HT(1B/1D) antagonist, and by overnight pretreatment with pertussis toxin (PTX). P/Q-type Ca(2+) channel blockers inhibited the inhibitory action of zolmitriptan on I(Ba), compared to N- and L-type blockers, and R-type blocker did, compared to L-type blocker, respectively (p < 0.05). All of the present results indicated that zolmitriptan inhibited HVA P/Q- and possibly R-type channels by activating the 5-HT(1B/1D) receptor linked to G(i/o) pathway. CONCLUSIONS It is concluded that this zolmitriptan inhibition of HVA Ca(2+) channels may explain the reduction in the release of neurotransmitters including CGRP, possibly leading to antimigraine effects of zolmitriptan.

UI MeSH Term Description Entries
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D011984 Sensory Receptor Cells Specialized afferent neurons capable of transducing sensory stimuli into NERVE IMPULSES to be transmitted to the CENTRAL NERVOUS SYSTEM. Sometimes sensory receptors for external stimuli are called exteroceptors; for internal stimuli are called interoceptors and proprioceptors. Nerve Endings, Sensory,Neurons, Sensory,Neuroreceptors,Receptors, Neural,Neural Receptors,Receptors, Sensory,Sensory Neurons,Sensory Receptors,Nerve Ending, Sensory,Neural Receptor,Neuron, Sensory,Neuroreceptor,Receptor Cell, Sensory,Receptor Cells, Sensory,Receptor, Neural,Receptor, Sensory,Sensory Nerve Ending,Sensory Nerve Endings,Sensory Neuron,Sensory Receptor,Sensory Receptor Cell
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D004305 Dose-Response Relationship, Drug The relationship between the dose of an administered drug and the response of the organism to the drug. Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response
D004594 Electrophysiology The study of the generation and behavior of electrical charges in living organisms particularly the nervous system and the effects of electricity on living organisms.
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001464 Barium An element of the alkaline earth group of metals. It has an atomic symbol Ba, atomic number 56, and atomic weight 138. All of its acid-soluble salts are poisonous.
D014276 Trigeminal Nerve The 5th and largest cranial nerve. The trigeminal nerve is a mixed motor and sensory nerve. The larger sensory part forms the ophthalmic, mandibular, and maxillary nerves which carry afferents sensitive to external or internal stimuli from the skin, muscles, and joints of the face and mouth and from the teeth. Most of these fibers originate from cells of the TRIGEMINAL GANGLION and project to the TRIGEMINAL NUCLEUS of the brain stem. The smaller motor part arises from the brain stem trigeminal motor nucleus and innervates the muscles of mastication. Cranial Nerve V,Fifth Cranial Nerve,Nerve V,Nervus Trigeminus,Cranial Nerve, Fifth,Fifth Cranial Nerves,Nerve V, Cranial,Nerve Vs,Nerve, Fifth Cranial,Nerve, Trigeminal,Trigeminal Nerves,Trigeminus, Nervus
D014363 Tryptamines Decarboxylated monoamine derivatives of TRYPTOPHAN. Indolylethylamines,Triptan,Triptans
D015220 Calcium Channels Voltage-dependent cell membrane glycoproteins selectively permeable to calcium ions. They are categorized as L-, T-, N-, P-, Q-, and R-types based on the activation and inactivation kinetics, ion specificity, and sensitivity to drugs and toxins. The L- and T-types are present throughout the cardiovascular and central nervous systems and the N-, P-, Q-, & R-types are located in neuronal tissue. Ion Channels, Calcium,Receptors, Calcium Channel Blocker,Voltage-Dependent Calcium Channel,Calcium Channel,Calcium Channel Antagonist Receptor,Calcium Channel Antagonist Receptors,Calcium Channel Blocker Receptor,Calcium Channel Blocker Receptors,Ion Channel, Calcium,Receptors, Calcium Channel Antagonist,VDCC,Voltage-Dependent Calcium Channels,Calcium Channel, Voltage-Dependent,Calcium Channels, Voltage-Dependent,Calcium Ion Channel,Calcium Ion Channels,Channel, Voltage-Dependent Calcium,Channels, Voltage-Dependent Calcium,Voltage Dependent Calcium Channel,Voltage Dependent Calcium Channels

Related Publications

Tomoko Morikawa, and Yoshiyasu Matsuzawa, and Koshi Makita, and Yoshifumi Katayama
April 1994, Brain research,
Tomoko Morikawa, and Yoshiyasu Matsuzawa, and Koshi Makita, and Yoshifumi Katayama
July 1993, Journal of neurophysiology,
Tomoko Morikawa, and Yoshiyasu Matsuzawa, and Koshi Makita, and Yoshifumi Katayama
March 2002, Life sciences,
Tomoko Morikawa, and Yoshiyasu Matsuzawa, and Koshi Makita, and Yoshifumi Katayama
March 1999, Journal of neurophysiology,
Tomoko Morikawa, and Yoshiyasu Matsuzawa, and Koshi Makita, and Yoshifumi Katayama
January 1997, Journal of neurophysiology,
Tomoko Morikawa, and Yoshiyasu Matsuzawa, and Koshi Makita, and Yoshifumi Katayama
October 1998, Journal of neurophysiology,
Tomoko Morikawa, and Yoshiyasu Matsuzawa, and Koshi Makita, and Yoshifumi Katayama
December 1995, Journal of neurophysiology,
Tomoko Morikawa, and Yoshiyasu Matsuzawa, and Koshi Makita, and Yoshifumi Katayama
September 1994, Brain research. Developmental brain research,
Tomoko Morikawa, and Yoshiyasu Matsuzawa, and Koshi Makita, and Yoshifumi Katayama
December 1997, The European journal of neuroscience,
Tomoko Morikawa, and Yoshiyasu Matsuzawa, and Koshi Makita, and Yoshifumi Katayama
November 2003, British journal of pharmacology,
Copied contents to your clipboard!