Deoxyadenosine- and cyclic AMP-induced cell cycle arrest and cytotoxicity. 1991

D A Albert, and E Nodzenski, and G H Cruz, and J Kuchibholtla, and J Kowalski
Department of Medicine, University of Chicago Medical Center, Illinois 60637.

We compared deoxyadenosine (AdR)- and cyclic AMP (cAMP)-induced cell cycle arrest and cytotoxicity in wild type and mutant S49 cells to determine whether they resulted from the same or different mechanisms. Cyclic AMP and deoxyadenosine are synergistic rather than additive in cytotoxicity assays, suggesting different mechanisms of toxicity. Although cyclic AMP causes cell death after 72 h, in concentrations sufficient to result in cell cycle arrest it is reversible with virtually no cytotoxicity for at least 24 h, whereas AdR-induced cell cycle arrest is lethal and irreversible. AdR-induced G1 cell cycle arrest results in diminished ribonucleotide reductase activity but the kinetics of this inhibition differ from cyclic AMP-induced cell cycle arrest. Cyclic AMP arrest and cytotoxicity depend on cyclic AMP-dependent protein kinase (PKA) activity, whereas AdR toxicity does not differ between cell lines with or without PKA activity. Furthermore, deoxycytidine prevents AdR cell cycle arrest and cytotoxicity but has no effect on cyclic AMP G1 arrest. Finally, comparison of cytofluorographic patterns of G1-arrested cells suggests that the AdR block is later in G1 than cyclic AMP-induced cell cycle arrest. In summary, these data show that while the mechanisms of cell cycle arrest and cytotoxicity of cyclic AMP and deoxyadenosine are uncertain, they do appear to involve different pathways.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D002453 Cell Cycle The complex series of phenomena, occurring between the end of one CELL DIVISION and the end of the next, by which cellular material is duplicated and then divided between two daughter cells. The cell cycle includes INTERPHASE, which includes G0 PHASE; G1 PHASE; S PHASE; and G2 PHASE, and CELL DIVISION PHASE. Cell Division Cycle,Cell Cycles,Cell Division Cycles,Cycle, Cell,Cycle, Cell Division,Cycles, Cell,Cycles, Cell Division,Division Cycle, Cell,Division Cycles, Cell
D002455 Cell Division The fission of a CELL. It includes CYTOKINESIS, when the CYTOPLASM of a cell is divided, and CELL NUCLEUS DIVISION. M Phase,Cell Division Phase,Cell Divisions,Division Phase, Cell,Division, Cell,Divisions, Cell,M Phases,Phase, Cell Division,Phase, M,Phases, M
D003839 Deoxyadenosines Adenosine molecules which can be substituted in any position, but are lacking one hydroxyl group in the ribose part of the molecule. Adenine Deoxyribonucleosides,Adenylyldeoxyribonucleosides,Deoxyadenosine Derivatives,Deoxyribonucleosides, Adenine,Derivatives, Deoxyadenosine
D003841 Deoxycytidine A nucleoside component of DNA composed of CYTOSINE and DEOXYRIBOSE. Cytosine Deoxyribonucleoside,Cytosine Deoxyriboside,Deoxyribonucleoside, Cytosine,Deoxyriboside, Cytosine
D004357 Drug Synergism The action of a drug in promoting or enhancing the effectiveness of another drug. Drug Potentiation,Drug Augmentation,Augmentation, Drug,Augmentations, Drug,Drug Augmentations,Drug Potentiations,Drug Synergisms,Potentiation, Drug,Potentiations, Drug,Synergism, Drug,Synergisms, Drug
D000242 Cyclic AMP An adenine nucleotide containing one phosphate group which is esterified to both the 3'- and 5'-positions of the sugar moiety. It is a second messenger and a key intracellular regulator, functioning as a mediator of activity for a number of hormones, including epinephrine, glucagon, and ACTH. Adenosine Cyclic 3',5'-Monophosphate,Adenosine Cyclic 3,5 Monophosphate,Adenosine Cyclic Monophosphate,Adenosine Cyclic-3',5'-Monophosphate,Cyclic AMP, (R)-Isomer,Cyclic AMP, Disodium Salt,Cyclic AMP, Monoammonium Salt,Cyclic AMP, Monopotassium Salt,Cyclic AMP, Monosodium Salt,Cyclic AMP, Sodium Salt,3',5'-Monophosphate, Adenosine Cyclic,AMP, Cyclic,Adenosine Cyclic 3',5' Monophosphate,Cyclic 3',5'-Monophosphate, Adenosine,Cyclic Monophosphate, Adenosine,Cyclic-3',5'-Monophosphate, Adenosine,Monophosphate, Adenosine Cyclic
D012264 Ribonucleotide Reductases Ribonucleotide Reductase,Reductase, Ribonucleotide,Reductases, Ribonucleotide
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated
D014407 Tumor Cells, Cultured Cells grown in vitro from neoplastic tissue. If they can be established as a TUMOR CELL LINE, they can be propagated in cell culture indefinitely. Cultured Tumor Cells,Neoplastic Cells, Cultured,Cultured Neoplastic Cells,Cell, Cultured Neoplastic,Cell, Cultured Tumor,Cells, Cultured Neoplastic,Cells, Cultured Tumor,Cultured Neoplastic Cell,Cultured Tumor Cell,Neoplastic Cell, Cultured,Tumor Cell, Cultured

Related Publications

D A Albert, and E Nodzenski, and G H Cruz, and J Kuchibholtla, and J Kowalski
June 1980, Proceedings of the National Academy of Sciences of the United States of America,
D A Albert, and E Nodzenski, and G H Cruz, and J Kuchibholtla, and J Kowalski
May 2024, Experimental parasitology,
D A Albert, and E Nodzenski, and G H Cruz, and J Kuchibholtla, and J Kowalski
August 2012, Clinical oral investigations,
D A Albert, and E Nodzenski, and G H Cruz, and J Kuchibholtla, and J Kowalski
January 2005, Birth defects research. Part A, Clinical and molecular teratology,
D A Albert, and E Nodzenski, and G H Cruz, and J Kuchibholtla, and J Kowalski
October 1972, Nature: New biology,
D A Albert, and E Nodzenski, and G H Cruz, and J Kuchibholtla, and J Kowalski
July 2008, Cancer biology & therapy,
D A Albert, and E Nodzenski, and G H Cruz, and J Kuchibholtla, and J Kowalski
May 1985, Molecular and cellular biochemistry,
D A Albert, and E Nodzenski, and G H Cruz, and J Kuchibholtla, and J Kowalski
November 1980, Biochimica et biophysica acta,
D A Albert, and E Nodzenski, and G H Cruz, and J Kuchibholtla, and J Kowalski
March 1975, Proceedings of the National Academy of Sciences of the United States of America,
D A Albert, and E Nodzenski, and G H Cruz, and J Kuchibholtla, and J Kowalski
May 1986, Cancer research,
Copied contents to your clipboard!