Developmental changes in neuromuscular transmission in the rat diaphragm. 1991

J D Feldman, and A R Bazzy, and T R Cummins, and G G Haddad
Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut 06510.

Neuromuscular transmission was studied in diaphragms from rats of three ages, 4-7 days old, 11-12 days old, and adults with the use of an in vitro phrenic nerve-hemidiaphragm preparation. Each hemidiaphragm was stimulated via either muscle or nerve with 1-s stimulus trains at frequencies from 10 to 100 Hz. The patterns of force development obtained in response to the two routes of stimulation were compared for each group. Diaphragms from adults developed maximum force in response to stimulation of approximately 40 Hz with no significant decrease in force at higher frequencies. Within each stimulus train, once peak force was achieved, it was maintained for the remainder of the stimulus and responses to nerve and muscle stimulation were almost identical. In contrast, diaphragms from 4- to 7-day-old rats developed maximum force at approximately 20 Hz; stimulation at greater than or equal to 60 Hz induced significantly less peak force. This decrease in peak force at higher frequencies was significantly larger for nerve than for muscle stimulation. In addition, during each nerve stimulus train diaphragms from 4- to 7-day-old rats were unable to maintain peak force, which decreased at frequencies greater than 20 Hz. The decrease in force reached approximately 50% of peak at stimulation frequencies greater than or equal to 60 Hz. Diaphragms from 11- to 12-day-old rats showed intermediate responses. Based on the responses to phrenic nerve stimulation, we conclude that the neonatal rat diaphragm shows marked neuromuscular transmission failure that is not seen in the adult.(ABSTRACT TRUNCATED AT 250 WORDS)

UI MeSH Term Description Entries
D009119 Muscle Contraction A process leading to shortening and/or development of tension in muscle tissue. Muscle contraction occurs by a sliding filament mechanism whereby actin filaments slide inward among the myosin filaments. Inotropism,Muscular Contraction,Contraction, Muscle,Contraction, Muscular,Contractions, Muscle,Contractions, Muscular,Inotropisms,Muscle Contractions,Muscular Contractions
D009124 Muscle Proteins The protein constituents of muscle, the major ones being ACTINS and MYOSINS. More than a dozen accessory proteins exist including TROPONIN; TROPOMYOSIN; and DYSTROPHIN. Muscle Protein,Protein, Muscle,Proteins, Muscle
D009126 Muscle Relaxation That phase of a muscle twitch during which a muscle returns to a resting position. Muscle Relaxations,Relaxation, Muscle,Relaxations, Muscle
D009435 Synaptic Transmission The communication from a NEURON to a target (neuron, muscle, or secretory cell) across a SYNAPSE. In chemical synaptic transmission, the presynaptic neuron releases a NEUROTRANSMITTER that diffuses across the synaptic cleft and binds to specific synaptic receptors, activating them. The activated receptors modulate specific ion channels and/or second-messenger systems in the postsynaptic cell. In electrical synaptic transmission, electrical signals are communicated as an ionic current flow across ELECTRICAL SYNAPSES. Neural Transmission,Neurotransmission,Transmission, Neural,Transmission, Synaptic
D009469 Neuromuscular Junction The synapse between a neuron and a muscle. Myoneural Junction,Nerve-Muscle Preparation,Junction, Myoneural,Junction, Neuromuscular,Junctions, Myoneural,Junctions, Neuromuscular,Myoneural Junctions,Nerve Muscle Preparation,Nerve-Muscle Preparations,Neuromuscular Junctions,Preparation, Nerve-Muscle,Preparations, Nerve-Muscle
D009929 Organ Size The measurement of an organ in volume, mass, or heaviness. Organ Volume,Organ Weight,Size, Organ,Weight, Organ
D010791 Phrenic Nerve The motor nerve of the diaphragm. The phrenic nerve fibers originate in the cervical spinal column (mostly C4) and travel through the cervical plexus to the diaphragm. Nerve, Phrenic,Nerves, Phrenic,Phrenic Nerves
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D012132 Respiratory Muscles These include the muscles of the DIAPHRAGM and the INTERCOSTAL MUSCLES. Ventilatory Muscles,Respiratory Muscle,Muscle, Respiratory,Muscle, Ventilatory,Muscles, Respiratory,Muscles, Ventilatory,Ventilatory Muscle
D003964 Diaphragm The musculofibrous partition that separates the THORACIC CAVITY from the ABDOMINAL CAVITY. Contraction of the diaphragm increases the volume of the thoracic cavity aiding INHALATION. Respiratory Diaphragm,Diaphragm, Respiratory,Diaphragms,Diaphragms, Respiratory,Respiratory Diaphragms

Related Publications

J D Feldman, and A R Bazzy, and T R Cummins, and G G Haddad
March 2004, Muscle & nerve,
J D Feldman, and A R Bazzy, and T R Cummins, and G G Haddad
January 2002, Cellular & molecular biology letters,
J D Feldman, and A R Bazzy, and T R Cummins, and G G Haddad
May 1979, European journal of pharmacology,
J D Feldman, and A R Bazzy, and T R Cummins, and G G Haddad
May 1976, Neuropharmacology,
J D Feldman, and A R Bazzy, and T R Cummins, and G G Haddad
January 2006, Muscle & nerve,
J D Feldman, and A R Bazzy, and T R Cummins, and G G Haddad
January 1974, Brain research,
J D Feldman, and A R Bazzy, and T R Cummins, and G G Haddad
March 1978, British journal of anaesthesia,
J D Feldman, and A R Bazzy, and T R Cummins, and G G Haddad
September 1986, Journal of applied physiology (Bethesda, Md. : 1985),
J D Feldman, and A R Bazzy, and T R Cummins, and G G Haddad
September 1984, The American journal of physiology,
J D Feldman, and A R Bazzy, and T R Cummins, and G G Haddad
October 2007, Bulletin of experimental biology and medicine,
Copied contents to your clipboard!