Differentiation induction of blast cells in two cases of childhood acute megakaryoblastic leukemia in vitro by interleukin-3 and interleukin-6: an ultrastructural cytochemical study. 1991

J Miyauchi, and K Sugita, and M Okui, and N Taguchi, and S C Clark, and K Shimizu
Central Laboratory, National Children's Hospital, Tokyo, Japan.

Although hematopoietic growth factors influence renewal and differentiation of blast progenitors in acute myelogenous leukemia (AML), morphological maturation of leukemic blasts is thought a rare event, even when cultured in the presence of appropriate growth stimulants. However, light microscopic observation may not be sufficient to clarify precisely the effects of hematopoietic growth factors on the morphological differentiation of leukemic blasts. In this study, using cell culture techniques and electron microscopic cytochemistry for platelet peroxidase (PPO), we studied the effects of interleukin-3 (IL-3) and interleukin-6 (IL-6), both of which are considered to play an important role in normal megakaryocytopoiesis, on the growth and differentiation of blast cells from two patients with childhood acute megakaryoblastic leukemia (AMKL). In both of the two cases, IL-3 stimulated leukemic colony formation in methylcellulose culture, whereas IL-6 showed little such activity. However, in suspension culture, IL-6 was active in promoting megakaryocytic differentiation, although incomplete, as detected by increase in the number of PPO-positive cells, some having demarcation membrane-like structure. This effect was evident in culture with IL-6 alone in one patient, but it was detectable only when IL-6 was used in combination with IL-3 in the other patient. In contrast, IL-3 alone stimulated differentiation towards myeloid but not megakaryocytic lineage. These results indicate that IL-3 and IL-6 have a distinct role in leukemic megakaryocytopoiesis (IL-3 stimulates growth, whereas IL-6 promotes morphological differentiation) and that cooperation between these two cytokines functions most effectively for megakaryocytic differentiation of AMKL cells in a fashion similar to that for normal megakaryocytopoiesis.

UI MeSH Term Description Entries
D007223 Infant A child between 1 and 23 months of age. Infants
D007377 Interleukin-3 A multilineage cell growth factor secreted by LYMPHOCYTES; EPITHELIAL CELLS; and ASTROCYTES which stimulates clonal proliferation and differentiation of various types of blood and tissue cells. Burst-Promoting Factor, Erythrocyte,Colony-Stimulating Factor 2 Alpha,Colony-Stimulating Factor, Mast-Cell,Colony-Stimulating Factor, Multipotential,Erythrocyte Burst-Promoting Factor,IL-3,Mast-Cell Colony-Stimulating Factor,Multipotential Colony-Stimulating Factor,P-Cell Stimulating Factor,Eosinophil-Mast Cell Growth-Factor,Hematopoietin-2,Burst Promoting Factor, Erythrocyte,Colony Stimulating Factor, Mast Cell,Colony Stimulating Factor, Multipotential,Eosinophil Mast Cell Growth Factor,Erythrocyte Burst Promoting Factor,Hematopoietin 2,Interleukin 3,Multipotential Colony Stimulating Factor,P Cell Stimulating Factor
D007947 Leukemia, Megakaryoblastic, Acute An acute myeloid leukemia in which 20-30% of the bone marrow or peripheral blood cells are of megakaryocyte lineage. MYELOFIBROSIS or increased bone marrow RETICULIN is common. Leukemia, Megakaryocytic,Leukemia, Megakaryocytic, Acute,Leukemia, Myeloid, Acute, M7,Megakaryoblastic Leukemia, Acute,Megakaryocytic Leukemia,Megakaryocytic Leukemia, Acute,Myeloid Leukemia, Acute, M7,Acute Megakaryoblastic Leukemia,Acute Megakaryoblastic Leukemias,Acute Megakaryocytic Leukemia,Acute Megakaryocytic Leukemias,Leukemia, Acute Megakaryoblastic,Leukemia, Acute Megakaryocytic,Leukemias, Acute Megakaryoblastic,Leukemias, Acute Megakaryocytic,Leukemias, Megakaryocytic,Megakaryoblastic Leukemias, Acute,Megakaryocytic Leukemias,Megakaryocytic Leukemias, Acute
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D009195 Peroxidase A hemeprotein from leukocytes. Deficiency of this enzyme leads to a hereditary disorder coupled with disseminated moniliasis. It catalyzes the conversion of a donor and peroxide to an oxidized donor and water. EC 1.11.1.7. Myeloperoxidase,Hemi-Myeloperoxidase,Hemi Myeloperoxidase
D010544 Peroxidases Ovoperoxidase
D011994 Recombinant Proteins Proteins prepared by recombinant DNA technology. Biosynthetic Protein,Biosynthetic Proteins,DNA Recombinant Proteins,Recombinant Protein,Proteins, Biosynthetic,Proteins, Recombinant DNA,DNA Proteins, Recombinant,Protein, Biosynthetic,Protein, Recombinant,Proteins, DNA Recombinant,Proteins, Recombinant,Recombinant DNA Proteins,Recombinant Proteins, DNA
D001752 Blast Crisis An advanced phase of chronic myelogenous leukemia, characterized by a rapid increase in the proportion of immature white blood cells (blasts) in the blood and bone marrow to greater than 30%. Blast Phase,Blast Crises,Blast Phases,Crises, Blast,Crisis, Blast,Phase, Blast,Phases, Blast
D001853 Bone Marrow The soft tissue filling the cavities of bones. Bone marrow exists in two types, yellow and red. Yellow marrow is found in the large cavities of large bones and consists mostly of fat cells and a few primitive blood cells. Red marrow is a hematopoietic tissue and is the site of production of erythrocytes and granular leukocytes. Bone marrow is made up of a framework of connective tissue containing branching fibers with the frame being filled with marrow cells. Marrow,Red Marrow,Yellow Marrow,Marrow, Bone,Marrow, Red,Marrow, Yellow
D002454 Cell Differentiation Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs. Differentiation, Cell,Cell Differentiations,Differentiations, Cell

Related Publications

J Miyauchi, and K Sugita, and M Okui, and N Taguchi, and S C Clark, and K Shimizu
September 1984, Medicina clinica,
J Miyauchi, and K Sugita, and M Okui, and N Taguchi, and S C Clark, and K Shimizu
February 1988, [Rinsho ketsueki] The Japanese journal of clinical hematology,
J Miyauchi, and K Sugita, and M Okui, and N Taguchi, and S C Clark, and K Shimizu
January 1987, Medicina clinica,
J Miyauchi, and K Sugita, and M Okui, and N Taguchi, and S C Clark, and K Shimizu
August 1980, Haematologica,
J Miyauchi, and K Sugita, and M Okui, and N Taguchi, and S C Clark, and K Shimizu
October 1984, Cancer,
J Miyauchi, and K Sugita, and M Okui, and N Taguchi, and S C Clark, and K Shimizu
March 1984, Blood,
J Miyauchi, and K Sugita, and M Okui, and N Taguchi, and S C Clark, and K Shimizu
January 1978, Pathologie-biologie,
J Miyauchi, and K Sugita, and M Okui, and N Taguchi, and S C Clark, and K Shimizu
February 1990, Blood,
J Miyauchi, and K Sugita, and M Okui, and N Taguchi, and S C Clark, and K Shimizu
September 1991, Journal of cellular physiology,
J Miyauchi, and K Sugita, and M Okui, and N Taguchi, and S C Clark, and K Shimizu
July 1983, Blood,
Copied contents to your clipboard!