Dietary fish oils modify adipocyte structure and function. 1991

C C Parrish, and D A Pathy, and J G Parkes, and A Angel
Department of Medicine, University of Toronto, Canada.

Dietary fish oils, enriched with omega-3 fatty acids (e.g., MaxEPA fish oil), inhibit lipogenesis and have a marked hypotriglyceridemic effect in man and experimental animals. Dietary omega-3 fatty acids also reduce adipose tissue trophic growth in rats. To understand the metabolic basis for this, we measured the effect of fish oil feeding upon rat plasma triglyceride concentration, fat pad mass, fat cell size, fat cell lipolysis, as well as lipoprotein binding to adipocyte plasma membranes. In adolescent (250 g) male Wistar rats fed 20% (w/w) fish oil supplemented diets for 3 weeks, plasma triglyceride levels and epididymal and perirenal fat pad mass were significantly (P less than 0.005) reduced compared to pair-fed controls given 20% lard diets. These differences in fat pad mass between the diets were greater than differences in whole animal mass or in the mass of livers, testes, kidneys, spleens, or hearts. Isoproterenol-stimulated lipolysis was significantly (P less than 0.005) higher in fish oil fed rats than in pair-fed controls. In young (100 g) rats plasma triglyceride levels were 10 times lower in the fish oil fed group after 5 weeks as compared to the lard-fed controls. This was accompanied by a reduction in epididymal and perirenal fat pad mass as well as a 2-3-fold decrease in adipocyte volumes; there was no significant difference between the two groups in fat cell number in each region. Plasma membranes of epididymal adipocytes from fish oil fed rats bound significantly (P less than 0.001) less HDL1 than the lard-fed rats, possibly as a result of a reduction in fat cell size and/or alteration of plasma membrane structure. Thus in both young and old rats, the reduction in plasma triglyceride concentration in conjunction with increased hormone-stimulated lipolysis may explain in part the selective reduction in adipose tissue trophic growth accompanying fish oil consumption.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008055 Lipids A generic term for fats and lipoids, the alcohol-ether-soluble constituents of protoplasm, which are insoluble in water. They comprise the fats, fatty oils, essential oils, waxes, phospholipids, glycolipids, sulfolipids, aminolipids, chromolipids (lipochromes), and fatty acids. (Grant & Hackh's Chemical Dictionary, 5th ed) Lipid
D008066 Lipolysis The metabolic process of breaking down LIPIDS to release FREE FATTY ACIDS, the major oxidative fuel for the body. Lipolysis may involve dietary lipids in the DIGESTIVE TRACT, circulating lipids in the BLOOD, and stored lipids in the ADIPOSE TISSUE or the LIVER. A number of enzymes are involved in such lipid hydrolysis, such as LIPASE and LIPOPROTEIN LIPASE from various tissues. Lipolyses
D008075 Lipoproteins, HDL A class of lipoproteins of small size (4-13 nm) and dense (greater than 1.063 g/ml) particles. HDL lipoproteins, synthesized in the liver without a lipid core, accumulate cholesterol esters from peripheral tissues and transport them to the liver for re-utilization or elimination from the body (the reverse cholesterol transport). Their major protein component is APOLIPOPROTEIN A-I. HDL also shuttle APOLIPOPROTEINS C and APOLIPOPROTEINS E to and from triglyceride-rich lipoproteins during their catabolism. HDL plasma level has been inversely correlated with the risk of cardiovascular diseases. High Density Lipoprotein,High-Density Lipoprotein,High-Density Lipoproteins,alpha-Lipoprotein,alpha-Lipoproteins,Heavy Lipoproteins,alpha-1 Lipoprotein,Density Lipoprotein, High,HDL Lipoproteins,High Density Lipoproteins,Lipoprotein, High Density,Lipoprotein, High-Density,Lipoproteins, Heavy,Lipoproteins, High-Density,alpha Lipoprotein,alpha Lipoproteins
D008297 Male Males
D009929 Organ Size The measurement of an organ in volume, mass, or heaviness. Organ Volume,Organ Weight,Size, Organ,Weight, Organ
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D011956 Receptors, Cell Surface Cell surface proteins that bind signalling molecules external to the cell with high affinity and convert this extracellular event into one or more intracellular signals that alter the behavior of the target cell (From Alberts, Molecular Biology of the Cell, 2nd ed, pp693-5). Cell surface receptors, unlike enzymes, do not chemically alter their ligands. Cell Surface Receptor,Cell Surface Receptors,Hormone Receptors, Cell Surface,Receptors, Endogenous Substances,Cell Surface Hormone Receptors,Endogenous Substances Receptors,Receptor, Cell Surface,Surface Receptor, Cell
D001835 Body Weight The mass or quantity of heaviness of an individual. It is expressed by units of pounds or kilograms. Body Weights,Weight, Body,Weights, Body
D002352 Carrier Proteins Proteins that bind or transport specific substances in the blood, within the cell, or across cell membranes. Binding Proteins,Carrier Protein,Transport Protein,Transport Proteins,Binding Protein,Protein, Carrier,Proteins, Carrier

Related Publications

C C Parrish, and D A Pathy, and J G Parkes, and A Angel
March 1992, Atherosclerosis,
C C Parrish, and D A Pathy, and J G Parkes, and A Angel
January 1997, Biochimica et biophysica acta,
C C Parrish, and D A Pathy, and J G Parkes, and A Angel
September 1998, Arteriosclerosis, thrombosis, and vascular biology,
C C Parrish, and D A Pathy, and J G Parkes, and A Angel
October 2017, Redox biology,
C C Parrish, and D A Pathy, and J G Parkes, and A Angel
January 1981, Progress in lipid research,
C C Parrish, and D A Pathy, and J G Parkes, and A Angel
October 1990, Cutis,
C C Parrish, and D A Pathy, and J G Parkes, and A Angel
May 1995, Lipids,
C C Parrish, and D A Pathy, and J G Parkes, and A Angel
February 1995, Clinical and experimental pharmacology & physiology,
C C Parrish, and D A Pathy, and J G Parkes, and A Angel
February 1997, Arteriosclerosis, thrombosis, and vascular biology,
C C Parrish, and D A Pathy, and J G Parkes, and A Angel
April 1991, Revista portuguesa de cardiologia : orgao oficial da Sociedade Portuguesa de Cardiologia = Portuguese journal of cardiology : an official journal of the Portuguese Society of Cardiology,
Copied contents to your clipboard!