Advanced drug delivery systems that target the vascular endothelium. 2006

Bi-Sen Ding, and Thomas Dziubla, and Vladimir V Shuvaev, and Silvia Muro, and Vladimir R Muzykantov
Department of Pharmacology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA. ding2@mail.med

Targeted drug delivery to endothelial cells lining the vascular lumen will provide effective, precise and safe therapeutic interventions for treatment of diverse disease conditions. Rational design of such drug delivery systems (DDS) includes the following intertwined tasks: 1) selection of proper target determinants on endothelial surfaces, such as cell adhesion molecules, ectopeptidases, or caveolar antigens; 2) production of affinity ligands useful for targeting, such as affinity peptides, antibodies, or their fragments; 3) selection and adopting of suitable delivery vehicles (such as liposomes or polymer nanocarriers); and 4) formulation of DDS with optimal targeting and therapeutic features. Important therapeutic features of DDS include: 1) sufficient targeting effectiveness, circulation time, and safety (i.e., lack of systemic and local adverse effects); 2) precise subcellular localization of drugs targeted to endothelial cells; and 3) adequate amplitude, kinetics, and duration of effects. This review utilizes examples of DDS-mediated interventions in vascular inflammation, oxidative stress, and thrombosis and analyzes them in an attempt to create design parameters that best regulate the pharmacological and therapeutic features of DDS that target endothelial cells.

UI MeSH Term Description Entries
D008954 Models, Biological Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment. Biological Model,Biological Models,Model, Biological,Models, Biologic,Biologic Model,Biologic Models,Model, Biologic
D004727 Endothelium A layer of epithelium that lines the heart, blood vessels (ENDOTHELIUM, VASCULAR), lymph vessels (ENDOTHELIUM, LYMPHATIC), and the serous cavities of the body. Endotheliums
D004730 Endothelium, Vascular Single pavement layer of cells which line the luminal surface of the entire vascular system and regulate the transport of macromolecules and blood components. Capillary Endothelium,Vascular Endothelium,Capillary Endotheliums,Endothelium, Capillary,Endotheliums, Capillary,Endotheliums, Vascular,Vascular Endotheliums
D005343 Fibrinolytic Agents Fibrinolysin or agents that convert plasminogen to FIBRINOLYSIN. Antithrombic Drug,Antithrombotic Agent,Antithrombotic Agents,Fibrinolytic Agent,Fibrinolytic Drug,Thrombolytic Agent,Thrombolytic Agents,Thrombolytic Drug,Antithrombic Drugs,Fibrinolytic Drugs,Thrombolytic Drugs,Agent, Antithrombotic,Agent, Fibrinolytic,Agent, Thrombolytic,Agents, Antithrombotic,Drug, Antithrombic,Drug, Fibrinolytic,Drug, Thrombolytic,Drugs, Antithrombic
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D001692 Biological Transport The movement of materials (including biochemical substances and drugs) through a biological system at the cellular level. The transport can be across cell membranes and epithelial layers. It also can occur within intracellular compartments and extracellular compartments. Transport, Biological,Biologic Transport,Transport, Biologic
D014568 Urokinase-Type Plasminogen Activator A proteolytic enzyme that converts PLASMINOGEN to FIBRINOLYSIN where the preferential cleavage is between ARGININE and VALINE. It was isolated originally from human URINE, but is found in most tissues of most VERTEBRATES. Plasminogen Activator, Urokinase-Type,U-Plasminogen Activator,Urinary Plasminogen Activator,Urokinase,Abbokinase,Kidney Plasminogen Activator,Renokinase,Single-Chain Urokinase-Type Plasminogen Activator,U-PA,Single Chain Urokinase Type Plasminogen Activator,U Plasminogen Activator,Urokinase Type Plasminogen Activator
D015815 Cell Adhesion Molecules Surface ligands, usually glycoproteins, that mediate cell-to-cell adhesion. Their functions include the assembly and interconnection of various vertebrate systems, as well as maintenance of tissue integration, wound healing, morphogenic movements, cellular migrations, and metastasis. Cell Adhesion Molecule,Intercellular Adhesion Molecule,Intercellular Adhesion Molecules,Leukocyte Adhesion Molecule,Leukocyte Adhesion Molecules,Saccharide-Mediated Cell Adhesion Molecules,Saccharide Mediated Cell Adhesion Molecules,Adhesion Molecule, Cell,Adhesion Molecule, Intercellular,Adhesion Molecule, Leukocyte,Adhesion Molecules, Cell,Adhesion Molecules, Intercellular,Adhesion Molecules, Leukocyte,Molecule, Cell Adhesion,Molecule, Intercellular Adhesion,Molecule, Leukocyte Adhesion,Molecules, Cell Adhesion,Molecules, Intercellular Adhesion,Molecules, Leukocyte Adhesion
D016503 Drug Delivery Systems Systems for the delivery of drugs to target sites of pharmacological actions. Technologies employed include those concerning drug preparation, route of administration, site targeting, metabolism, and toxicity. Drug Targeting,Delivery System, Drug,Delivery Systems, Drug,Drug Delivery System,Drug Targetings,System, Drug Delivery,Systems, Drug Delivery,Targeting, Drug,Targetings, Drug
D049329 Nanostructures Materials which have structured components with at least one dimension in the range of 1 to 100 nanometers. These include NANOCOMPOSITES; NANOPARTICLES; NANOTUBES; and NANOWIRES. Nanomaterials,Nanostructured Materials,Material, Nanostructured,Materials, Nanostructured,Nanomaterial,Nanostructure,Nanostructured Material

Related Publications

Bi-Sen Ding, and Thomas Dziubla, and Vladimir V Shuvaev, and Silvia Muro, and Vladimir R Muzykantov
January 1997, Pharmaceutical research,
Bi-Sen Ding, and Thomas Dziubla, and Vladimir V Shuvaev, and Silvia Muro, and Vladimir R Muzykantov
February 2015, Current opinion in chemical engineering,
Bi-Sen Ding, and Thomas Dziubla, and Vladimir V Shuvaev, and Silvia Muro, and Vladimir R Muzykantov
January 2020, Advanced drug delivery reviews,
Bi-Sen Ding, and Thomas Dziubla, and Vladimir V Shuvaev, and Silvia Muro, and Vladimir R Muzykantov
January 2011, Dermatologic therapy,
Bi-Sen Ding, and Thomas Dziubla, and Vladimir V Shuvaev, and Silvia Muro, and Vladimir R Muzykantov
February 2005, Expert opinion on therapeutic targets,
Bi-Sen Ding, and Thomas Dziubla, and Vladimir V Shuvaev, and Silvia Muro, and Vladimir R Muzykantov
January 2019, Recent patents on drug delivery & formulation,
Bi-Sen Ding, and Thomas Dziubla, and Vladimir V Shuvaev, and Silvia Muro, and Vladimir R Muzykantov
November 2016, Expert opinion on drug delivery,
Bi-Sen Ding, and Thomas Dziubla, and Vladimir V Shuvaev, and Silvia Muro, and Vladimir R Muzykantov
August 2014, Advanced healthcare materials,
Bi-Sen Ding, and Thomas Dziubla, and Vladimir V Shuvaev, and Silvia Muro, and Vladimir R Muzykantov
July 2022, AAPS PharmSciTech,
Bi-Sen Ding, and Thomas Dziubla, and Vladimir V Shuvaev, and Silvia Muro, and Vladimir R Muzykantov
August 2022, Advanced drug delivery reviews,
Copied contents to your clipboard!