Factors influencing the latency of the peroxisomal enzyme dihydroxyacetone-phosphate acyltransferase (DHAP-AT) in permeabilized human skin fibroblasts. 1991

E J Wolvetang, and J M Tager, and R J Wanders
Department of Pediatrics, University Hospital Amsterdam, The Netherlands.

In selectively permeabilized fibroblasts suspended in a medium mimicking the composition of the cytosol the peroxisomal enzyme dihydroxyacetone-phosphate acyltransferase (DHAP-AT) was found to exhibit about 80% latency (Wolvetang, E.J., Tager, J.M. and Wanders, R.J.A. (1990) Biochem. Biophys. Res. Commun. 1035, 6-11). We investigated which components of the cytosol mimicking medium are important for latency of DHAP-AT and unmasking of latent DHAP-AT activity by ATP. We show that the latency of DHAP-AT is critically dependent upon the presence of reduced glutathione in the medium and that the in vivo prevailing GSH/GSSG ratio is sufficient to maintain DHAP-AT latency. Although thiol-groups in the peroxisomal membrane seem to be essential for the integrity of peroxisomes in selectively permeabilized fibroblasts no latency of DHAP-AT is observed in buffered sucrose media or in cell homogenates, irrespective of the presence of GSH in the medium used. We suggest that during homogenization irreversible damage is inflicted upon the peroxisomal membrane and/or that more factors than at present investigated are involved in maintaining peroxisomal integrity. Furthermore, we demonstrate that cations play a role in the stimulatory effect of ATP on latent DHAP-AT activity while a proton gradient is not directly involved in the stimulatory effect of ATP on latent DHAP-AT activity.

UI MeSH Term Description Entries
D007425 Intracellular Membranes Thin structures that encapsulate subcellular structures or ORGANELLES in EUKARYOTIC CELLS. They include a variety of membranes associated with the CELL NUCLEUS; the MITOCHONDRIA; the GOLGI APPARATUS; the ENDOPLASMIC RETICULUM; LYSOSOMES; PLASTIDS; and VACUOLES. Membranes, Intracellular,Intracellular Membrane,Membrane, Intracellular
D008830 Microbodies Electron-dense cytoplasmic particles bounded by a single membrane, such as PEROXISOMES; GLYOXYSOMES; and glycosomes. Glycosomes,Glycosome,Microbody
D011188 Potassium An element in the alkali group of metals with an atomic symbol K, atomic number 19, and atomic weight 39.10. It is the chief cation in the intracellular fluid of muscle and other cells. Potassium ion is a strong electrolyte that plays a significant role in the regulation of fluid volume and maintenance of the WATER-ELECTROLYTE BALANCE.
D011522 Protons Stable elementary particles having the smallest known positive charge, found in the nuclei of all elements. The proton mass is less than that of a neutron. A proton is the nucleus of the light hydrogen atom, i.e., the hydrogen ion. Hydrogen Ions,Hydrogen Ion,Ion, Hydrogen,Ions, Hydrogen,Proton
D002463 Cell Membrane Permeability A quality of cell membranes which permits the passage of solvents and solutes into and out of cells. Permeability, Cell Membrane
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D004140 Dinitrophenols Organic compounds that contain two nitro groups attached to a phenol.
D005347 Fibroblasts Connective tissue cells which secrete an extracellular matrix rich in collagen and other macromolecules. Fibroblast
D005978 Glutathione A tripeptide with many roles in cells. It conjugates to drugs to make them more soluble for excretion, is a cofactor for some enzymes, is involved in protein disulfide bond rearrangement and reduces peroxides. Reduced Glutathione,gamma-L-Glu-L-Cys-Gly,gamma-L-Glutamyl-L-Cysteinylglycine,Glutathione, Reduced,gamma L Glu L Cys Gly,gamma L Glutamyl L Cysteinylglycine
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man

Related Publications

E J Wolvetang, and J M Tager, and R J Wanders
September 1980, The Journal of biological chemistry,
E J Wolvetang, and J M Tager, and R J Wanders
March 1987, The Journal of biological chemistry,
E J Wolvetang, and J M Tager, and R J Wanders
November 1988, Biochimica et biophysica acta,
E J Wolvetang, and J M Tager, and R J Wanders
February 2010, Carbohydrate research,
E J Wolvetang, and J M Tager, and R J Wanders
January 1991, Journal of inherited metabolic disease,
E J Wolvetang, and J M Tager, and R J Wanders
May 2005, Brain research. Molecular brain research,
E J Wolvetang, and J M Tager, and R J Wanders
November 1998, American journal of medical genetics,
Copied contents to your clipboard!