Leukocyte adherence inhibits adenosine-dependent venular control of arteriolar diameter and nitric oxide. 2006

Min-ho Kim, and Norman R Harris
Dept. of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center, Shreveport, LA 71130, USA.

Venular control of arteriolar perfusion has been the focus of several investigations in recent years. This study investigated 1) whether endogenous adenosine helps control venule-dependent arteriolar dilation and 2) whether venular leukocyte adherence limits this response via an oxidant-dependent mechanism in which nitric oxide (NO) levels are decreased. Intravital microscopy was used to assess changes in arteriolar diameters and NO levels in rat mesentery. The average resting diameter of arterioles (27.5 +/- 1.0 microm) paired with venules with minimal leukocyte adherence (2.1 +/- 0.3 per 100-microm length) was significantly larger than that of unpaired arterioles (24.5 +/- 0.8 microm) and arterioles (23.3 +/- 1.3 microm) paired with venules with higher leukocyte adherence (9.0 +/- 0.5 per 100-microm length). Local superfusion of adenosine deaminase (ADA) induced significant decreases in diameter and perivascular NO concentration in arterioles closely paired to venules with minimal leukocyte adherence. However, ADA had little effect on arterioles closely paired to venules with high leukocyte adherence or on unpaired arterioles. To determine whether the attenuated response to ADA for the high-adherence group was oxidant dependent, the responses were also observed in arterioles treated with 10(-4) M Tempol. In the high-adherence group, Tempol fully restored NO levels to those of the low-adherence group; however, the ADA-induced constriction remained attenuated, suggesting a possible role for an oxidant-independent vasoconstrictor released from the inflamed venules. These findings suggest that adenosine- and venule-dependent dilation of paired arterioles may be mediated, in part, by NO and inhibited by venular leukocyte adherence.

UI MeSH Term Description Entries
D007962 Leukocytes White blood cells. These include granular leukocytes (BASOPHILS; EOSINOPHILS; and NEUTROPHILS) as well as non-granular leukocytes (LYMPHOCYTES and MONOCYTES). Blood Cells, White,Blood Corpuscles, White,White Blood Cells,White Blood Corpuscles,Blood Cell, White,Blood Corpuscle, White,Corpuscle, White Blood,Corpuscles, White Blood,Leukocyte,White Blood Cell,White Blood Corpuscle
D008297 Male Males
D008839 Microelectrodes Electrodes with an extremely small tip, used in a voltage clamp or other apparatus to stimulate or record bioelectric potentials of single cells intracellularly or extracellularly. (Dorland, 28th ed) Electrodes, Miniaturized,Electrode, Miniaturized,Microelectrode,Miniaturized Electrode,Miniaturized Electrodes
D009569 Nitric Oxide A free radical gas produced endogenously by a variety of mammalian cells, synthesized from ARGININE by NITRIC OXIDE SYNTHASE. Nitric oxide is one of the ENDOTHELIUM-DEPENDENT RELAXING FACTORS released by the vascular endothelium and mediates VASODILATION. It also inhibits platelet aggregation, induces disaggregation of aggregated platelets, and inhibits platelet adhesion to the vascular endothelium. Nitric oxide activates cytosolic GUANYLATE CYCLASE and thus elevates intracellular levels of CYCLIC GMP. Endogenous Nitrate Vasodilator,Mononitrogen Monoxide,Nitric Oxide, Endothelium-Derived,Nitrogen Monoxide,Endothelium-Derived Nitric Oxide,Monoxide, Mononitrogen,Monoxide, Nitrogen,Nitrate Vasodilator, Endogenous,Nitric Oxide, Endothelium Derived,Oxide, Nitric,Vasodilator, Endogenous Nitrate
D010477 Perfusion Treatment process involving the injection of fluid into an organ or tissue. Perfusions
D002448 Cell Adhesion Adherence of cells to surfaces or to other cells. Adhesion, Cell,Adhesions, Cell,Cell Adhesions
D003497 Cyclic N-Oxides Heterocyclic compounds in which an oxygen is attached to a cyclic nitrogen. Heterocyclic N-Oxides,Cyclic N Oxides,Heterocyclic N Oxides,N Oxides, Cyclic,N-Oxides, Cyclic,N-Oxides, Heterocyclic,Oxides, Cyclic N
D004563 Electrochemistry The study of chemical changes resulting from electrical action and electrical activity resulting from chemical changes. Electrochemistries
D000241 Adenosine A nucleoside that is composed of ADENINE and D-RIBOSE. Adenosine or adenosine derivatives play many important biological roles in addition to being components of DNA and RNA. Adenosine itself is a neurotransmitter. Adenocard,Adenoscan
D000243 Adenosine Deaminase An enzyme that catalyzes the hydrolysis of ADENOSINE to INOSINE with the elimination of AMMONIA. Adenosine Aminohydrolase,Aminohydrolase, Adenosine,Deaminase, Adenosine

Related Publications

Min-ho Kim, and Norman R Harris
August 1996, The American journal of physiology,
Min-ho Kim, and Norman R Harris
September 1994, The American journal of physiology,
Min-ho Kim, and Norman R Harris
October 1993, The American journal of physiology,
Min-ho Kim, and Norman R Harris
June 1990, The American journal of physiology,
Min-ho Kim, and Norman R Harris
November 2013, Microvascular research,
Min-ho Kim, and Norman R Harris
January 1998, Hypertension (Dallas, Tex. : 1979),
Min-ho Kim, and Norman R Harris
August 2000, Critical care medicine,
Min-ho Kim, and Norman R Harris
November 1989, The American journal of physiology,
Copied contents to your clipboard!